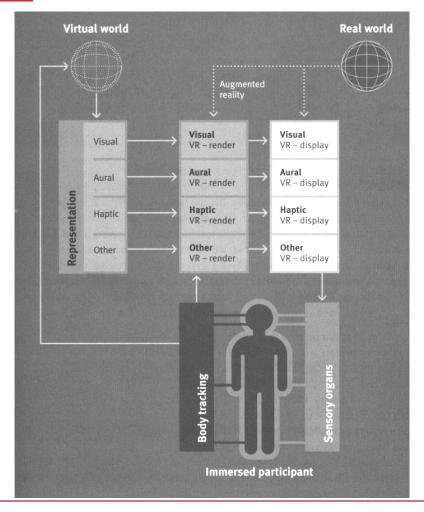


IMGD 5100: Immersive HCI

Output Devices - Non-Visual


Robert W. Lindeman

Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu

Overview

- □ Here we are concerned with technology for stimulating the senses
- ☐ This time, nonvisual senses

Audio Displays

- □ Spatialization vs. Localization
- □ Spatialization is the processing of sound signals to make them emenate from a point in space
- □ *Localization* is the ability of people to identify the source position of a sound

Audio Display Properties

- **Presentation Properties**
- Number of channels
- Sound stage
- Localization
- Masking
- Amplification

- Logistical Properties
- Noise pollution
- User mobility
- Interface with tracking
- Environmental requirements
- Integration
- Portability
- □ Throughput
- □ Cumber
- □ Safety
- □ Cost

Channels & Masking

- Number of channels
 - Stereo vs. mono vs. quadrophonic
 - **2.1**, 5.1, 7.1
- ■Two kinds of masking
 - Louder sounds mask softer ones
 - Physical objects mask sound signal
 - Happens with speakers, but not with headphones

Audio Displays

☐ Head-worn

Audio Displays: Room Mounted

- □ Stereo, 5.1, 7.1
- □ What is the ".1"?
- ■Sound cube

Types of Sound?

- Music
 - Opening/Closing
 - Area-based music
 - Function-based music
 - Character-based music
 - Story-line-based music
- □Speech
 - NPC speech
 - Your thoughts
- Non-speech audio

Music in Games

- Opening/closing music
 - Can help set the stage for a game
 - Can be "forever linked" to the game
 - You must remember some...

- □ Area-based music
 - Each level (or scene) of a game has different music
 - Country vs. city
 - Indoor vs. outdoor

Music in Games (cont.)

- □ Function-based music
 - Music changes based on what you are doing
 - Fighting
 - Walking around
- □This can be a very good cue that someone is attacking
 - If they are behind you, for example

Music in Games (cont.)

- Character-based music
 - Each playable character has his/her own "theme" music
 - Many RPGs use this
 - Film uses this too (

- ☐ Story-line-based music
 - As in film
 - Music contains a recurring theme
 - Used for continuity
 - Used to build suspense

Speech

- □Player
 - Used to communicate with others
 - Used to hear your own thoughts
- Non-player characters
 - Used to convey information to you/others
- More and more "voice talent" being used
 - Big money
 - Return of radio?
- Often accompanied by subtitles

Non-Speech Audio

- ☐ Used to enhance the story
- □ Similar to Foley artists in film
 - The art of recreating incidental sound effects (such as footsteps) in synchronization with the visual component of a movie. Named after early practitioner **Jack Foley**, foley artists sometimes use bizarre objects and methods to achieve sound effects, *e.g.*, snapping celery to mimic bones being broken. The sounds are often exaggerated for extra effect fight sequences are almost always accompanied by loud foley-added thuds and slaps.

(Source: www.imdb.com)

☐ Typically used to mimic (hyper-)reality

Non-Speech Audio (cont.)

- ■Some examples:
 - Footsteps
 - □ Vary depending on flooring, shoe type, or gait
 - **Explosions:**
 - Vary depending on what is exploding
 - Bumping into things
 - □ Walls, bushes, etc.
 - Objects in the scene
 - □ Vehicles, weapon loading/firing, machinery
 - Animals
 - Anything that works!

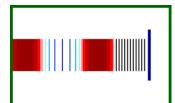
Non-Speech Audio (cont.)

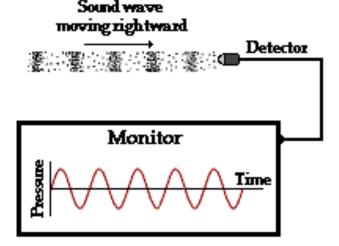
□ Real examples

- The screech of a TIE Fighter is a drastically altered elephant bellow, a woman screaming, and more
- Wookie sounds are constructed out of walrus and other animal sounds
 - Laser blasts are taken from the sound of a hammer on an antenna tower guide wire
 - Light saber hum taken from a TV set and an old 35 mm projector to create the hum

http://www.filmsound.org/starwars/#burtt

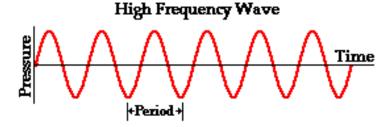
Non-Speech Audio (cont.)


- □ State of the character
 - Breathing, heartbeat
- □ Synchronized spatialized video and audio can increase immersion
- Confirmation of user action
 - Reload
 - Menu-item "ping"
 - Unlock a door

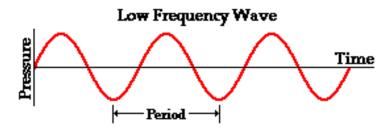


Structure of Sound

■ Made up of pressure waves in the air


- Sound is a longitudinal wave
 - Vibration is in the same direction (or opposite) of travel

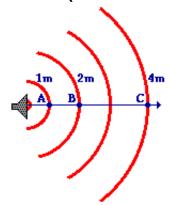
(http://www.glenbrook.k12.il.us/GBSSCI/PHYS/CLASS/sound/soundtoc.html)



Frequency and Amplitude

- ☐ Frequency determines the *pitch* of the sound
- Amplitude relates to intensity of the sound
 - Loudness is a subjective measure of intensity
- ☐ High frequency = short period

Low frequency = long period



Distance to Listener

□ Relationship between sound intensity and distance to the listener

Inverse-square law

☐ The intensity varies inversely with the square of the distance from the source. So if the distance from the source is doubled (increased by a factor of 2), then the intensity is quartered (decreased by a factor of 4).

Audio Processing

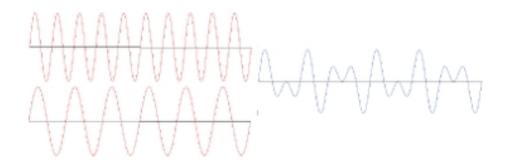
- Audio is made up of a source and a listener
- Music is typically source-less
 - May be 5.1 surround sound, etc.
- □ Sound undergoes changes as it travels from source to listener
 - Reflects off of objects
 - Absorbed by objects
 - Occluded by objects
- □ Does this sound familiar?

Audio Processing (cont.)

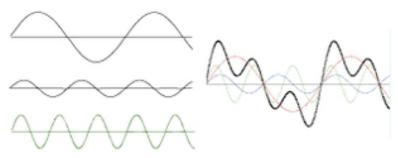
- □ Just like light, different materials affect different parts of a sound signal
 - Low frequencies vs. high frequencies
- We can trace the path of sound from source to listener just like we trace light
 - But, we are less tolerant of discontinuities in sound
 - It is more expensive to process "correctly"
- □So, we cheat (as always ;-)

Source of Sounds

- □ Like textures, sounds can be captured from nature (*sampled*) or synthesized computationally
 - High-quality sampled sounds are
 - □ Cheap to play
 - □ Easy to create realism
 - □ Expensive to store and load
 - □ Difficult to manipulate for expressiveness
 - Synthetic sounds are
 - Cheap to store and load
 - □ Easy to manipulate
 - □ Expensive to compute before playing
 - □ Difficult to create realism


Synthetic Sounds

- □ Complex sounds are built from simple waveforms (e.g., sawtooth, sine) and combined using operators
- Waveform parameters (frequency, amplitude) could be taken from motion data, such as object velocity
- Can combine wave forms in various ways
 - This is what classic synthesizers do
- Works well for many non-speech sounds



Combining Wave Forms

Adding up waves creates new waves

Two tones combined

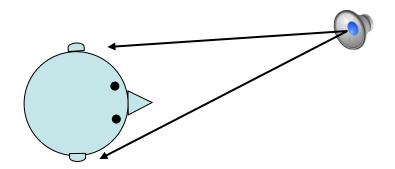
Three tones combined

Sampling Rates and Bit Rates

- Analog signals need to be translated into digital ones
 - Actually, analog is better in terms of quality!
 - Digital is easier to handle (manipulate)

Spatialized Audio Effects

- Naïve approach
 - Simple left/right shift for lateral position
 - Amplitude adjustment for distance
- Easy to produce using commodity hardware/software
- Does not give us "true" realism in sound
 - No up/down or front/back cues
- We can use multiple speakers for this
 - Surround the user with speakers
 - Send different sound signals to each one


Spatialized Audio Effects (cont.)

- What is Dolby 5.1 surround sound?
- We hear with two ears
 - So, why is 5.1 (or 7.1) sound needed?!?!
- □ If we can correctly model how sound reaches our ears, we should be able to reproduce sounds from arbitrary locations in space
- Much work was done in 1990s on this

Head-Related Transfer Functions

- □A.K.A. HRTFs
- A set of functions that model how sound from a source at a known location reaches the eardrum

Constructing HRTFs

- □ Small microphones placed into ear canals
- □ Subject sits in an anechoic chamber
 - Can use a mannequin's head instead
- □ Sounds played from a large number of known locations around the chamber
- □ Functions are constructed for this data
- Sound signal is filtered through inverse functions to place the sound at the desired source

More About HRTFs

- Functions take into account, for example,
 - Individual ear shape
 - Slope of shoulders
 - Head shape
- □So, each person has his/her own HRTF!
 - Need to have a parameterizable HRTFs
- □Some sound cards/APIs allow you to specify an HRTF to use
- Check Wikipedia or Google for more info!

Environmental Effects

- □ Sound is also influenced by objects in the environment
 - Can reverberate off of reflective objects
 - Can be absorbed by objects
 - Can be occluded by objects
- □ Doppler shift

The Tough Part

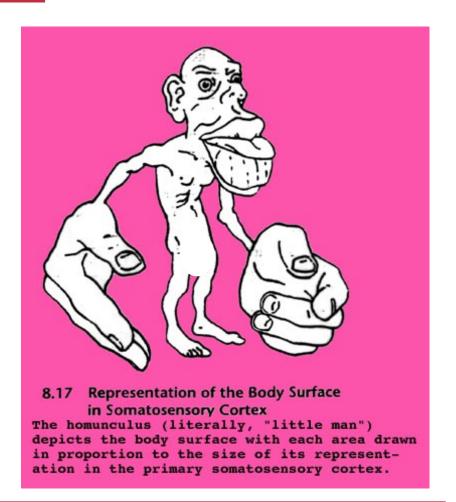
- All of this takes a lot of processing
- □ Need to keep track of
 - Multiple (possibly moving) sound sources
 - Path of sounds through a dynamic environment
 - Position and orientation of listener(s)
- Most sound cards only support a limited number of spatialized sound channels
- Increasingly complex geometry increases load on audio system as well as visuals
 - That's why we fake it ;-)
- □ GPUs might change this too!

Haptic Displays

- □ Haptic sense is most complex
 - Tactile
 - Stimuli on the skin
 - □ Different kinds of mechanoreceptors, each with varying types of sensitivity
 - Temperature
 - □ Actually part of tactile
 - Kinesthetic
 - □ Force on the muscles and tendons
 - □ Proprioception
 - □ Force feedback
 - Wind
 - Pain

Haptic Sense

- The haptic sense is bidirectional
 - Senses the environment
 - Acts on the environment
 - Tight coupling between the two
- □ Skin is the largest organ


Haptic Devices

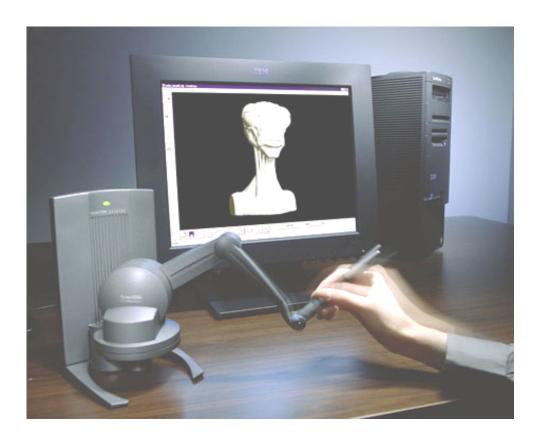
- □ Pin arrays for the finger(s)
- □ Force-feedback "arms"
- □ "Pager" motors
- □ Particle brakes
- □ Passive haptics
- Many devices are application specific
 - Like surgical devices

Haptic Feedback in VR

- □ Tactile: Surface properties
 - Most densely populated area is the fingertip (okay, it's the tongue)
- □ Kinesthetic: Muscles, Tendons, etc.
 - Also known as proprioception

Haptic Sense (cont)

- □ Sensitivity varies greatly
 - Two-point discrimination



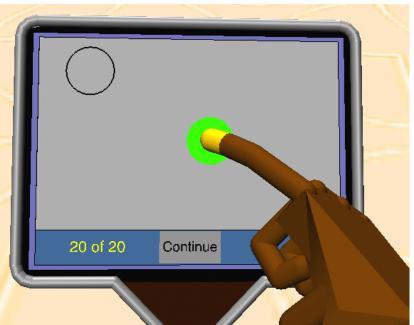
Body Site	Threshold Distance
Finger	2-3mm
Cheek	6mm
Nose	7mm
Palm	10mm
Forehead	15mm
Foot	20mm
Belly	30mm
Forearm	35mm
Upper Arm	39mm
Back	39mm
Shoulder	41mm
Thigh	42mm
Calf	45mm

http://faculty.washington.edu/chudler/chsense.html

SensAble PHANToM

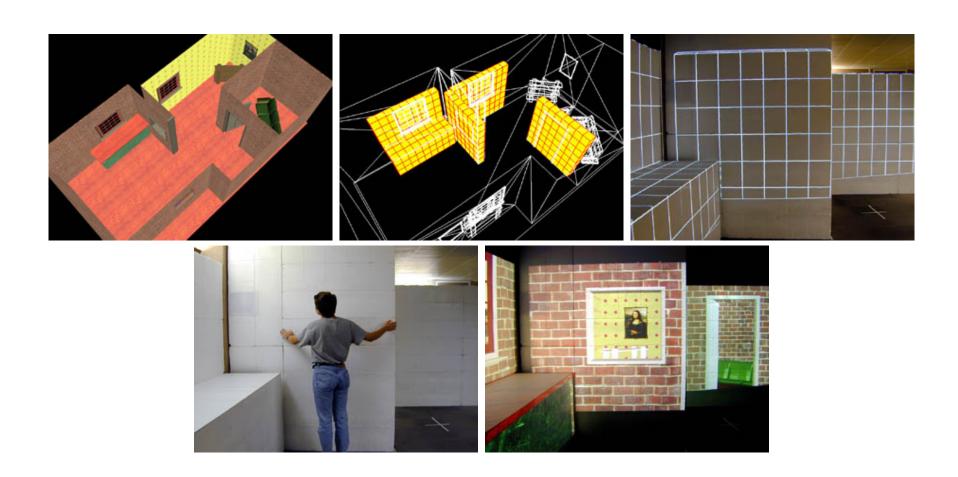
http://www.sensable.com/

Immersion CyberGrasp



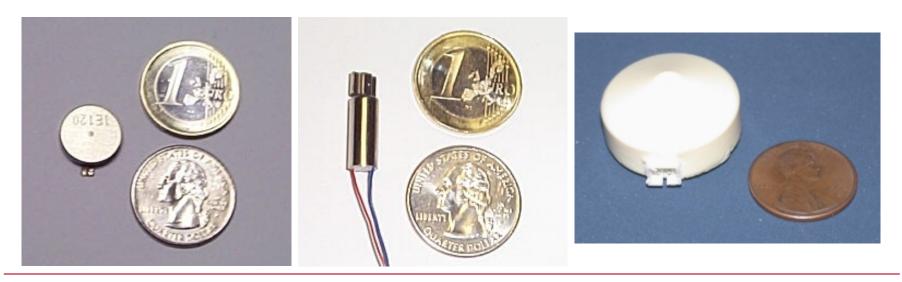
http://www.immersion.com/

Passive Haptic Paddle



http://www.cs.wpi.edu/~gogo/hive/

UNC Being There Project


Haptic Feedback in VR

- □ Virtual contact
 - What should we do when we know that contact has been made with a virtual object?
 - The *output* of collision detection is the *input* to virtual contact
 - Cues for understanding the nature of contact with objects are typically over-simplified (e.g., sound)
- □ Training aids
 - Can we convey additional information using the haptic channel?

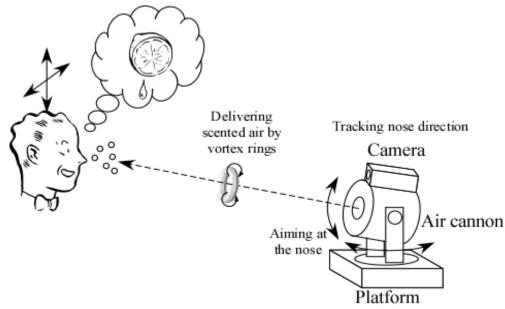
Vibrotactile Cueing Devices

- □ Vibrotactile feedback has been incorporated into many devices
- □ Can we use this technology to provide scalable, wearable touch cues?

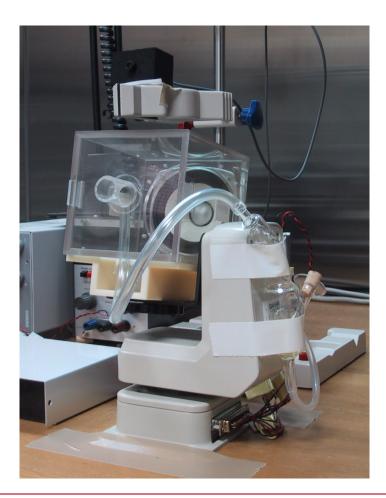
Vibrotactile Feedback Projects

Navy TSAS Project

TactaBoard and TactaVest

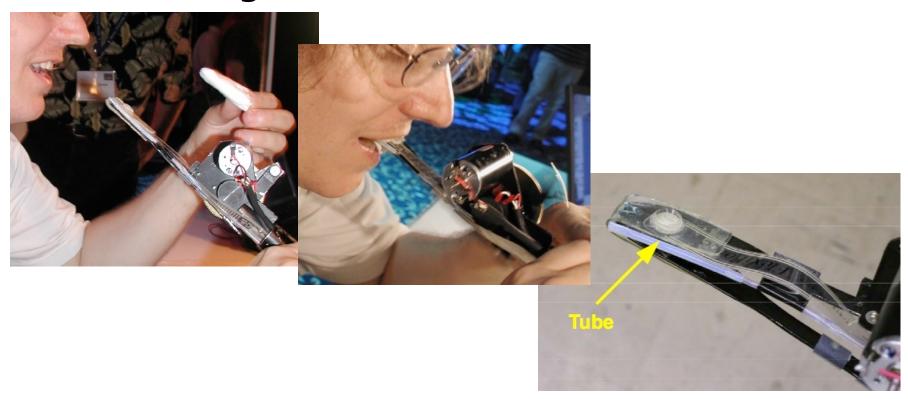


Olfactory Sense


- □ Two main problems
 - Scent generation
 - □ Tens of thousands of receptor types
 - Scent delivery
 - □ Easier problem

WPI

Air Cannon (Yanagida, 2004)



Gustatory

■Not much research here, but some interesting stuff

Summary

- □ There is lots of cool stuff left to try in order to fool the senses
- □ It's an engineering problem
- It's a human-physiology problem
- It's a human-perception problem
- ■It's an interesting problem!