
IMGD 4000
Technical Game Development II

Advanced Pathfinding

Robert W. Lindeman
Associate Professor

Interactive Media & Game Development
Human Interaction in Virtual Environments (HIVE) Lab

Department of Computer Science
Worcester Polytechnic Institute

gogo@wpi.edu

2

A* Pathfinding Search
 Covered in detail in IMGD 3000
 See pseudo-code and links to reference

code at
http://web.cs.wpi.edu/~gogo/courses/
imgd3000_2011c/slides/imgd3000_08_AI_A_Star.pdf
 Basic A* is what you should use for

Ghoulie movement (if you choose that
option)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

3

Practical Path Planning
 Just raw A* is often not enough
 Also need:

 Navigation graphs
 points of visibility (POV)
 Navigation mesh (NavMesh)

 Path smoothing
 Compute-time optimizations
 Hierarchical pathfinding
 Special case methods

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Basic Navigation Graph
Construction (cont.)
 Downside:

 Modest 100x100 cell map has 10,000 nodes
and 78,000 edges

 Can burden CPU and memory, especially if
multiple AI’s calling in

Rest of lecture is a survey about how to do better...

4	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

5

Point of Visibility (POV)
Navigation Graph

 Place graph nodes (usually by hand) at
important points in environment, such
that each node has line of sight to at least
one other node

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

6

POV Navigation

  Find closest visible node (a) to current location
  Find closest visible node (b) to target location
 Search for least cost path from (a) to (b), e.g., A*
 Move to (a)
  Follow path to (b)
 Move to target location note “backtracking”	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

7

Blind Spots in POV

 No POV point is visible from red spots!
 Easy to fix manually in small graphs
 A problem in larger graphs
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

8

POV Navigation
 Advantage

  Obvious how to build and expand

 Disadvantages
  Can take a lot of developer time, especially if design is

rapidly evolving
  Problematic if random or user generated maps
  Can have “blind spots”
  Can have “jerky” (backtracking) paths

 Solutions
1.  Automatically generate POV graphs
2.  Make finer grained graphs
3.  Path smoothing

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

9

Automatic POV by
Expanded Geometry
1.  Expand geometry by

amount proportional
to bounding radius of
agents

2.  Connect all vertices
3.  Prune non-line-of-

sight points

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

10

NavMesh
 Partition open space
 into a network of
 convex polygons
 Why convex?
 Guaranteed to be path from
 any point to any point inside

 Very efficient to search
 Can be automatically generated from

arbitrary polygons
 Becoming very popular

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

11

Finely Grained Graphs

 Improves blind spots and path smoothness
 Typically generate automatically using “flood

fill”
 Back to similar performance issues as tiled

graphs
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

12

Flood Fill

 Same algorithm
as in “paint”
programs

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

13

Path Finding in
Finely Grained Graph

 Use A* or Dijkstra depending on whether
looking for one or multiple targets

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

14

Problem: Kinky Paths

The solution: Path smoothing

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

15

Simple Smoothing Algorithm

 Check for “passability” between adjacent edges

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

16

Smoothing Example

E1	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

17

Methods to Reduce CPU Overhead

shortest path table
(next node)	

path cost table	

time/space tradeoff	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

18

Hierarchical Path Planning

 Reduces CPU overhead
  Typically two levels, but can be more
  First plan in high-level, then refine in low-level

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

19

Getting Out of Stuck Situations

•  Bot gets “wedged” against wall	

•  Looks really bad!	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

20

Getting Out of Stuck Situations
 Heuristic:

 Calculate the distance to bot’s current
waypoint each update step

 If this value remains about the same or
consistently increases
 then it’s probably wedged, so backup and replan

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Time Slicing -- Sketch
 When there are many NPC’s making calls on

the pathfinding module at the same time,
the CPU can get dragged down...

 Solution?
 Evenly divide fixed CPU pathfinding budget

between all current callers
  Implies that caller may have to wait for answer

 What should NPC do while it is waiting for
path?
 Do not just “block”
 Start moving in “general direction” of target

21 R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Time Slicing and Smoothing

22

without smoothing	
 smoothed	

Smoothing is really needed if doing time slicing:	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

23

Advanced Pathfinding Summary
 You would not necessarily use all of these

techniques in one game

 Only use whatever your game demands
and no more

 For reference C++ code see
http://samples.jbpub.com/9781556220784/Buckland_SourceCode.zip

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Thanks Chuck!
 Thanks to Chuck Rich for this material!

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

24	

