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Procedural Content Generation 
 The algorithmic creation of game content 

with limited or indirect user input1 

 or 
 Computer software that can create game 

content on its own, or together with one 
or many human players or designers1 

2 

1Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N., What is procedural content generation?: Mario on the 
borderline. Proc. of the 2nd Workshop on Procedural Content Generation in Games (2011)	
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Game Content? 
 Levels, tracks, maps, terrains, dungeons, 

puzzles, buildings, trees, grass, fire, plots, 
descriptions, scenarios, dialogue, quests, 
characters, rules, boards, parameters, 
camera viewpoint, dynamics, weapons, 
clothing, vehicles, personalities... 

 Wow! Just about anything! 
 Except NPC behavior (this is AI) 
 More on this later! 
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History: 
Runtime Level Generation 
 Rogue (1980) 
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History: 
Runtime Level Generation 
 Tribal Trouble (2005) 
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History: 
Runtime Level Generation 
 Civilization IV (2005) 
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History: 
Runtime Level Generation 
 Dwarf Fortress (2007) 
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History: 
Runtime Level Generation 
 Diablo (2008) 
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History: 
Runtime Level Generation 
 AaaaaAAaaaAAAaaAAAAaAAAAA (2009) 
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History: 
Foliage Generation 
 SpeedTree (Oblivion, 2009) 
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Terrain Generation: 
Can be Based on Physics 
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The Future? 
 Can we drastically cut game development 

costs by creating content automatically from 
designers’ intentions? 

 Can we create games that adapt their game 
worlds to the preferences of the player? 

 Can we create endless games? 
 Can the computer circumvent or augment 

limited human creativity and create new 
types of games? 
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Procedural Dungeon Generation 
 In general 

 PCG > Randomness 

 Can think of approaches as 
 Online vs. Offline 
 Necessary vs. Optional 
 Random seed vs. Parameter vectors 
 Stochastic vs. Deterministic 
 Constructive vs. Generate-and-test 
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Online vs. Offline 
 Online 

 As the game is being played 
 What could be the downside of this? 
 What is the upside? 

 Offline 
 During development/building of the game 
 What could be the downside of this? 
 What is the upside? 
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Necessary vs. Optional 
 Necessary content 

 Content the player needs to pass in order to 
progress 

 Move the story along, solve a puzzle, etc. 

 Optional content 
 Can be discarded, or bypassed, or exchanged 

for something else 
 Background things, like terrain, forest, non-

essential characters, etc. 
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Stochastic vs. Deterministic 
 Deterministic 

 Given the same starting conditions, always 
creates the same content 

 Stochastic 
 The above is not the case 
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Random Seeds vs. 
Parameter Vectors 
 Also known as Dimensions of Control 
 Can we specify the shape of the content in 

some meaningful way? 
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Constructive vs. 
Generate-and-test 
 Constructive 

 Generate the content once, and be done with 
it 

 Generate-and-test 
 Generate, test for quality, tweak, and re-

generate until the content is good enough 
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Search-based Paradigm 
 A special case of generate-and-test 

 The test function returns a numeric fitness 
value (not just accept/reject) 

 The fitness value guides the generation of new 
candidate content items 

 Usually implemented through evolutionary 
computation 
 Genetic Algorithms 
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Evolutionary Computation? 
 Keep a population of candidates 
 Measure the fitness of each candidate 
 Remove the worst candidates 
 Replace with copies of the best (least bad) 

candidates 
 Mutate/crossover the copies 

 Can use all genetic operations (and some you 
can make up!) 
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Procedural Dungeon Generation 
 In general 

 PCG > Randomness 

 Space-Partitioning Algorithms 
 Macro approach 

 Agent-Based Dungeon Growing 
 Micro approach 
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Space-Partitioning 
Approaches: Quad Trees 
 Can partition the space, and choose how 

to fill each leaf 
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Space-Partitioning 
Approaches: K-D Trees 
 Special case of BSP Trees 
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Space-Partitioning 
Approaches: K-D Trees 
 Add rooms and corridors 
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Space-Partitioning 
Approaches: K-D Trees 
 Add a theme to the resulting dungeon 
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Agent-Based Dungeon Growing 
 Agent chooses what to do based on 

different probabilities 
 Keep going, turn, build a room, etc. 
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Agent-Based Dungeon Growing: 
“Blind” Digger Code 
1.  initialize chance of changing direction Pc=5 
2.  initialize chance of adding room Pr=5 

3.  place the digger at a dungeon tile and randomize its direction 
4.  dig along that direction 

5.  roll a random number Nc between 0 and 100 
6.  if Nc below Pc: 

7.      randomize the agent’s direction 
8.      set Pc=0 

9.  else: 
10.      set Pc=Pc+5 

11.  roll a random number Nr between 0 and 100 
12.  if Nr below Pr: 

13.      randomize room width and room height between 3 and 7 
14.      place room around current agent position 

15.      set Pr=0 
16.  else: 

17.      set Pr=Pr+5 
18.  if the dungeon is not large enough: 

19.      go to step 4 
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Agent-Based Dungeon Growing: 
“Look Ahead” Digger Code 
1.  place the digger at a dungeon tile 
2.  set helper variables Fr=0 and Fc=0 
3.  for all possible room sizes: 

4.      if a potential room will not intersect existing rooms: 
5.          place the room 

6.          Fr=1 
7.          break from for loop 

8.  for all possible corridors of any direction and length 3 to 7: 
9.      if a potential corridor will not intersect existing rooms: 

10.         place the corridor 
11.         Fc=1 

12.         break from for loop 
13. if Fr=1 or Fc=1: 

14.     go to 2 
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Cellular Automata 
 A discrete computational model 

 An n-dimensional grid 
 E.g., two-dimensional grid 

 A set of states 
 Simplest: ON/OFF 

 A set of transition rules 
 Decide what to do based on neighborhood 
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Cellular Automata 
 Number of possible configurations of a 

neighborhood? 
 Possible_StatesNumber_of_Cells 

 E.g., for a two-state automata and a Moore 
neighborhood of size 2, 
 225 = 33,554,432 

 Small neighborhoods usually use a lookup 
 Each neighborhood configuration leads to a state 

 Large neighborhoods usually use a proportion 
of cells of each state 
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Example: Infinite Caves* 
  Each room is a 50x50 grid, where each cell can be 

either empty or rock (2 states) 
  Initially, each cell has a probability r (e.g., 0.5) that 

it is rock 
  Leads to relatively uniform rock distribution 

 Apply a single rule to the grid for n (e.g., 2) steps 
  A cell turns into rock in the next step if at least T (e.g., 5) 

neighbors are rock, otherwise, it turns into free space 

  For looks, rock cells that border empty space are 
designated as “walls”, but function like rock 
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*Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular Automata for Real-time Generation of Infinite 
Cave Levels. In: Proceedings of the ACM Foundations of Digital Games. ACM Press (2010)	




Example: Infinite Caves* 
 Random vs. Cooked 
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CA params: n =4, M=1, T=5	
Red=Wall White=Rock, Other=Floor clusters	




Example: Infinite Caves* 
 Need to connect rooms, and smooth 

 Drill at thinnest points, then run two more 
iterations 
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Controlled Procedural 
Terrain Generation 

Using Software Agents 
 

Adapted by Julian Togelius from 
Jonathon Doran and Ian Parberry 
Published in IEEE TCIAIG, 2010 
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Five Agent Types 
 Apply each of these agents in succession 

 Coastline agents 
 Smoothing agents 
 Beach agents 
 Mountain agents 
 River agents 

 Agent Rules 
  Each agent has a number of “tokens” to spend on actions 
  Each agent is allowed to see the current elevation around it, 

and allowed to modify it 
  Agents don’t interact directly 
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In the beginning... 
 ...there was a vast ocean. 

 Then came the first coastline agent. 
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Coastline Agents 
 Multiply until they cover the whole coast 

 About 1000 necessary for this size map 

 Move out to position themselves right at 
the border of land and sea 

 Generate a repulsor and an attractor point 
 Score all neighboring points according to 

distance to repulsor and attractor points 
 Move to the best-scoring points, adding 

land as they go along 
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Coastline Agent Code 
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Coastline Agents 
 Varying action sizes (number of tokens) 
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Smoothing Agents 
 Take random walks on the map 
 Change the elevation of each visited point 

to (almost) the mean of its extended von 
Neumann neighborhood 
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Smoothing Agent Code 
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Beach Agents 
 Select random position along the coast, 

where coast is not too steep 
 Flatten an area around this point (leaving 

small variations) 
 Move randomly a short direction away 

from the coast, flattening the area 
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Beach Agent Code 
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Beach Agents 
 Varying beach width 
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Mountain Agents 
 Start at random positions and directions 
 Move forward, continuously elevating a 

wedge, creating a ridge 
 Turn randomly without 45 degrees from 

the initial course 
 Periodically offshoot “foothills” 

perpendicular to movement direction 
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Mountain Agent Code 
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Mountain Agents 
 Narrow vs. wide features 
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River Agents 
 Move from a random point on the coast 

towards a random point on a mountain 
ridge 

 “Wiggle” along the path 
 Stop when reaching too high altitudes 
 Retrace the path down to the ocean, 

deepening a wedge along the path 
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River Agent Code 
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River Agents 
 A dry river, and the outflow of three rivers 
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In What Order? 
 Doran and Parberry suggest 

 Coastline 
 Landform 
 Erosion 

 But the “Implementation” suggests 
random order 
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Further Questions 
 Parameters... what parameters? 
 What features of landscapes do we want 

to be able to specify? 
 How can the human and the algorithm 

interact productively? 
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Self Similarity 
 Level of detail remains the same as we 

zoom in 
 Example 

 Surface roughness, or silhouette, of mountains 
is the same at many zoom levels 

 Difficult to determine scale 

 Types of fractals 
 Exactly self-similar 
 Statistically self-similar 
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Example: 
Ferns 
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Fractals and Self-Similarity 
 Exact Self-similarity 

  Each small portion of the fractal is a reduced-scale 
replica of the whole (except for a possible rotation 
and shift). 

 Statistical Self-similarity 
  The irregularities in the curve are statistically the 

same, no matter how many times the picture is 
enlarged. 
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Fractal Coastline 
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Examples of Fractals 
 Modeling mountains (terrain) 
 Clouds 
 Fire 
 Branches of a tree 
 Grass 
 Coastlines 
 Surface of a sponge 
 Cracks in the pavement 
 Designing antennae (www.fractenna.com) 
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Examples of Fractals: Trees 

   Fractals appear “the same” at every scale.  
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Examples of Fractals: Mountains 

Images: www.kenmusgrave.com	
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Examples of Fractals: Clouds 

Images: www.kenmusgrave.com	
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Examples of Fractals: Fire 

Images: www.kenmusgrave.com	
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Examples of Fractals: Comets? 

Images: www.kenmusgrave.com	
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Koch Curves 
 Discovered in 1904 by Helge von Koch 
 Start with straight line of length 1 
 Recursively 

 Divide line into three equal parts 
 Replace middle section with triangular bump 

with sides of length 1/3 
 New length = 4/3 
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Koch Snowflake 
 Can form Koch snowflake by joining three Koch 

curves 
 Perimeter of snowflake grows as: 

 

 where Pi is the perimeter of the ith snowflake 
iteration 

 However, area grows slowly as S∞ = 8/5! 
 Self similar 

  Zoom in on any portion 
  If n is large enough, shape is the same 
 On computer, smallest line segent > pixel spacing 

€ 

Pi = 3 4 3( )
i

www.jimloy.com	
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Koch Snowflake 

S3	
 S4	
 S5	
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Fractal Dimension – Eg. 2 
The Sierpinski Triangle 
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N = 3,  s = ½  
 ∴D =1.584 
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Space-Filling Curves 
 There are fractal curves which 

completely fill up higher dimensional 
spaces such as squares or cubes. 

 The space-filling curves are also 
known as Peano curves (Giuseppe 
Peano: 1858-1932). 

 Space-filling curves in 2D have a 
fractal dimension 2.  

You’re not expected to be able to prove this. 
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Space-Filling Curves 
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Space-Filling Curves in 3D 
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Generating Fractals 
 Iterative/recursive subdivision techniques 

 Grammar based systems (L-Systems) 
  Suitable for turtle graphics/vector devices 

 Iterated Functions Systems (IFS) 
  Suitable for raster devices 
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L-Systems 
(“Lindenmayer Systems”) 

 A grammar-based model for generating simple 
fractal curves 
  Devised by biologist Aristid Lindenmayer for modeling 

cell growth 
  Particularly suited for rendering line drawings of fractal 

curves using turtle graphics 

 Consists of a start string (axiom) and a set of 
replacement rules 
  At each iteration all replacement rules are applied to the 

string in parallel 

 Common symbols: 
  F  Move forward one unit in the current direction. 
  +  Turn right through an angle A. 
  -  Turn left through an angle A. 
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The Koch Curve 
Axiom: F  (the zeroth order Koch curve) 
Rule: F →  F-F++F-F 
Angle: 60°  
 
First order:  

 F-F++F-F 
 
 
 
Second order: 
 
 
   

F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F 

60 

120 

Order 

0 

1 

2 
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The Dragon Curve 
Axiom: FX 
Rules: 
   F → ∅ 
   X → +FX––FY+ 
   Y → –FX++FY– 
Angle: 45 ° 

At each step, 
replace a straight 
segment with a 
right angled 
elbow. 
 
Alternate right and 
left elbows. 
 
FX and FY are 
“embryonic” right  
and left elbows 
respectively. 
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L-System code 
import turtle 
turtle.speed(0) # Max speed (still horribly slow) 
 

def draw(start, rules, angle, step, maxDepth): 
    for char in start: 
        if maxDepth == 0: 
            if   char == 'F': turtle.forward(step) 
            elif char == '-': turtle.left(angle) 
            elif char == '+': turtle.right(angle) 
        else: 
            if char in rules:  # rules is a dictionary 
                char = rules[char] 
            draw(char, rules, angle, step, maxDepth-1) 
# Dragon example: 
draw("FX",{'F':"",'X':"+FX--FY+",'Y':"–FX++FY–"}, 45, 5, 10) 
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Generalized Grammars 
 The grammar rules in L-systems can be further 

generalized to provide the capability of drawing 
branchlike figures, rather than just continuous 
curves. 

 The symbol  [  is used to store the current state 
of the turtle (position and direction) in a stack 
for later use. 

 The symbol  ]  is used to perform a pop 
operation on the stack to restore the turtle’s 
state to a previously stored value. 
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Generalized Grammars 
Fractal bush: 
  S →  F 
  F →  FF-[-F+F+F]+[+F-F-F] 
  (A = 22 degs.) 
 

Zero order bush 
            F 

First order bush 
Fourth order bush 
(with 90 deg. rotation) 
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Random Fractals 
 Natural objects do not contain identical scaled 

down copies within themselves and so are not 
exact fractals. 

 Practically every example observed involves 
what appears to be some element of 
randomness, perhaps due to the interactions of 
very many small parts of the process. 

 Almost all algorithms for generating fractal 
landscapes effectively add random irregularities 
to the surface at smaller and smaller scales. 
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Random Fractals 
 Random fractals are  

  randomly generated curves 
that exhibit self-similarity,  or 

  deterministic fractals modified 
using random variables 

 Random fractals are used to 
model many natural shapes 
such as trees, clouds, and 
mountains. 
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Random Midpoint Displacement 
Algorithm (2D) 

g A B 
C   Subdivide a line segment into two 

parts, by displacing the midpoint by 
a random amount “g”. i.e., y-
coordinate of C is 

     yC  =  ( yA + yB )/2  + g 

  Generate g using a Gaussian 
random variable with zero mean 
(allowing negative values) and 
standard deviation s. 

  Recurse on each new part 
  At each level of recursion, the 

standard deviation is scaled by a 
factor (1/2)H 
  H is a constant between 0 and 1 
  H = 1 in the example on the right 
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Midpoint Displacement Algorithm 
(3D) 
Square-Step: 
Subdivide a ground square into 
four parts, by displacing the 
midpoint by a Gaussian 
random variable g with mean 
0, std dev s.  
   i.e., Compute  y-coordinate 
of E as 
yE  =  ( yA + yB + yC + yD )/4  + g 

 

Z 

X 

A B 

C D 

E 

Do that for all squares in the grid 
(only 1 square for the first iteration). 
Then ... 
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Diamond step 
 To get back to a regular grid, we now need 

new vertices at all the edge mid-points too.  

 For this we use a diamond step: 

Vertices before square step 

New vertices from square step 

Vertex from diamond step 
(on an old edge midpoint). 
Computed as in square step but 
using the 4 diamond vertices. 

Do this for all edges (i.e., all possible diamonds). 
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Diamond step (cont’d) 

“Reflect” vertices at grid edges to make diamonds there. 
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Diamond-Square Algorithm 
   The above two steps 

are repeated for the 
new mesh, after 
scaling the standard 
deviation of g by 
(1/2)H. And so on … 

H=0.8 

H=0.4 
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Diamond Step Process 

 1st pass  2nd pass  5th pass 
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Height Maps 
 The 2D height map obtained using the 

diamond-square algorithm can be used to 
generate fractal clouds. 

 Use the y value to generate opacity. 
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Useful Links 
  Terragen – terrain generator 

  http://www.planetside.co.uk/terragen/ 
 

  Generating Random Fractal Terrain 
  http://www.gameprogrammer.com/fractal.html 
 

  Lighthouse 3D OpenGL Terrain Tutorial 
  http://www.lighthouse3d.com/opengl/terrain/ 

  Book about Procedural Content Generation 
  Noor Shaker, Julian Togelius, Mark J. Nelson, Procedural Content 

Generation in Games: A Textbook and an Overview of Current 
Research (Springer), 2014. 

  Book about Procedural Generation 
 David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steve 
Worley. Texturing and Modeling: A Procedural Approach (The 
Morgan Kaufmann Series in Computer Graphics) 
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Source for Most of this Material 
 Much of the material covered in this 

lecture came from excellent material from 
a course on Procedural Content 
Generation by Julian Togelius, and a good 
book by Julian, Noor Shaker, and mark 
Nelson from ITU: 
 http://game.itu.dk/ 
 http://pcgbook.com/ 
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