
IMGD 4000
Technical Game Development II
Procedural Content Generation

Robert W. Lindeman
Associate Professor

Interactive Media & Game Development
Human Interaction in Virtual Environments (HIVE) Lab

Department of Computer Science
Worcester Polytechnic Institute

gogo@wpi.edu

Procedural Content Generation
 The algorithmic creation of game content

with limited or indirect user input1

 or
 Computer software that can create game

content on its own, or together with one
or many human players or designers1

2

1Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N., What is procedural content generation?: Mario on the
borderline. Proc. of the 2nd Workshop on Procedural Content Generation in Games (2011)	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Game Content?
 Levels, tracks, maps, terrains, dungeons,

puzzles, buildings, trees, grass, fire, plots,
descriptions, scenarios, dialogue, quests,
characters, rules, boards, parameters,
camera viewpoint, dynamics, weapons,
clothing, vehicles, personalities...

 Wow! Just about anything!
 Except NPC behavior (this is AI)
 More on this later!

3	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 Rogue (1980)

4	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 Tribal Trouble (2005)

5	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 Civilization IV (2005)

6	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 Dwarf Fortress (2007)

7	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 Diablo (2008)

8	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 AaaaaAAaaaAAAaaAAAAaAAAAA (2009)

9	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Foliage Generation
 SpeedTree (Oblivion, 2009)

10	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Terrain Generation:
Can be Based on Physics

11	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

The Future?
 Can we drastically cut game development

costs by creating content automatically from
designers’ intentions?

 Can we create games that adapt their game
worlds to the preferences of the player?

 Can we create endless games?
 Can the computer circumvent or augment

limited human creativity and create new
types of games?

12	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Procedural Dungeon Generation
 In general

 PCG > Randomness

 Can think of approaches as
 Online vs. Offline
 Necessary vs. Optional
 Random seed vs. Parameter vectors
 Stochastic vs. Deterministic
 Constructive vs. Generate-and-test

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

13	

Online vs. Offline
 Online

 As the game is being played
 What could be the downside of this?
 What is the upside?

 Offline
 During development/building of the game
 What could be the downside of this?
 What is the upside?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

14	

Necessary vs. Optional
 Necessary content

 Content the player needs to pass in order to
progress

 Move the story along, solve a puzzle, etc.

 Optional content
 Can be discarded, or bypassed, or exchanged

for something else
 Background things, like terrain, forest, non-

essential characters, etc.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

15	

Stochastic vs. Deterministic
 Deterministic

 Given the same starting conditions, always
creates the same content

 Stochastic
 The above is not the case

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

16	

Random Seeds vs.
Parameter Vectors
 Also known as Dimensions of Control
 Can we specify the shape of the content in

some meaningful way?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

17	

Constructive vs.
Generate-and-test
 Constructive

 Generate the content once, and be done with
it

 Generate-and-test
 Generate, test for quality, tweak, and re-

generate until the content is good enough

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

18	

Search-based Paradigm
 A special case of generate-and-test

 The test function returns a numeric fitness
value (not just accept/reject)

 The fitness value guides the generation of new
candidate content items

 Usually implemented through evolutionary
computation
 Genetic Algorithms

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

19	

Evolutionary Computation?
 Keep a population of candidates
 Measure the fitness of each candidate
 Remove the worst candidates
 Replace with copies of the best (least bad)

candidates
 Mutate/crossover the copies

 Can use all genetic operations (and some you
can make up!)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

20	

Procedural Dungeon Generation
 In general

 PCG > Randomness

 Space-Partitioning Algorithms
 Macro approach

 Agent-Based Dungeon Growing
 Micro approach

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

21	

Space-Partitioning
Approaches: Quad Trees
 Can partition the space, and choose how

to fill each leaf

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

22	

Space-Partitioning
Approaches: K-D Trees
 Special case of BSP Trees

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

23	

Space-Partitioning
Approaches: K-D Trees
 Add rooms and corridors

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

24	

Space-Partitioning
Approaches: K-D Trees
 Add a theme to the resulting dungeon

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

25	

Agent-Based Dungeon Growing
 Agent chooses what to do based on

different probabilities
 Keep going, turn, build a room, etc.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

26	

Agent-Based Dungeon Growing:
“Blind” Digger Code
1.  initialize chance of changing direction Pc=5
2.  initialize chance of adding room Pr=5

3.  place the digger at a dungeon tile and randomize its direction
4.  dig along that direction

5.  roll a random number Nc between 0 and 100
6.  if Nc below Pc:

7.  randomize the agent’s direction
8.  set Pc=0

9.  else:
10.  set Pc=Pc+5

11.  roll a random number Nr between 0 and 100
12.  if Nr below Pr:

13.  randomize room width and room height between 3 and 7
14.  place room around current agent position

15.  set Pr=0
16.  else:

17.  set Pr=Pr+5
18.  if the dungeon is not large enough:

19.  go to step 4

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

27	

Agent-Based Dungeon Growing:
“Look Ahead” Digger Code
1.  place the digger at a dungeon tile
2.  set helper variables Fr=0 and Fc=0
3.  for all possible room sizes:

4.  if a potential room will not intersect existing rooms:
5.  place the room

6.  Fr=1
7.  break from for loop

8.  for all possible corridors of any direction and length 3 to 7:
9.  if a potential corridor will not intersect existing rooms:

10.  place the corridor
11.  Fc=1

12.  break from for loop
13. if Fr=1 or Fc=1:

14.  go to 2

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

28	

Cellular Automata
 A discrete computational model

 An n-dimensional grid
 E.g., two-dimensional grid

 A set of states
 Simplest: ON/OFF

 A set of transition rules
 Decide what to do based on neighborhood

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

29	

Moore	

Neighborhood	

von Neumann	

Neighborhood	

Cellular Automata
 Number of possible configurations of a

neighborhood?
 Possible_StatesNumber_of_Cells

 E.g., for a two-state automata and a Moore
neighborhood of size 2,
 225 = 33,554,432

 Small neighborhoods usually use a lookup
 Each neighborhood configuration leads to a state

 Large neighborhoods usually use a proportion
of cells of each state

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

30	

Example: Infinite Caves*
  Each room is a 50x50 grid, where each cell can be

either empty or rock (2 states)
  Initially, each cell has a probability r (e.g., 0.5) that

it is rock
  Leads to relatively uniform rock distribution

 Apply a single rule to the grid for n (e.g., 2) steps
  A cell turns into rock in the next step if at least T (e.g., 5)

neighbors are rock, otherwise, it turns into free space

  For looks, rock cells that border empty space are
designated as “walls”, but function like rock

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

31	

*Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular Automata for Real-time Generation of Infinite
Cave Levels. In: Proceedings of the ACM Foundations of Digital Games. ACM Press (2010)	

Example: Infinite Caves*
 Random vs. Cooked

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

32	

CA params: n =4, M=1, T=5	
Red=Wall White=Rock, Other=Floor clusters	

Example: Infinite Caves*
 Need to connect rooms, and smooth

 Drill at thinnest points, then run two more
iterations

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

33	

34	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Controlled Procedural
Terrain Generation

Using Software Agents

Adapted by Julian Togelius from
Jonathon Doran and Ian Parberry
Published in IEEE TCIAIG, 2010

35	

Five Agent Types
 Apply each of these agents in succession

 Coastline agents
 Smoothing agents
 Beach agents
 Mountain agents
 River agents

 Agent Rules
  Each agent has a number of “tokens” to spend on actions
  Each agent is allowed to see the current elevation around it,

and allowed to modify it
  Agents don’t interact directly

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

36	

In the beginning...
 ...there was a vast ocean.

 Then came the first coastline agent.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

37	

Coastline Agents
 Multiply until they cover the whole coast

 About 1000 necessary for this size map

 Move out to position themselves right at
the border of land and sea

 Generate a repulsor and an attractor point
 Score all neighboring points according to

distance to repulsor and attractor points
 Move to the best-scoring points, adding

land as they go along
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

38	

Coastline Agent Code

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

39	

Coastline Agents
 Varying action sizes (number of tokens)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

40	

Smoothing Agents
 Take random walks on the map
 Change the elevation of each visited point

to (almost) the mean of its extended von
Neumann neighborhood

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

41	

Smoothing Agent Code

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

42	

Beach Agents
 Select random position along the coast,

where coast is not too steep
 Flatten an area around this point (leaving

small variations)
 Move randomly a short direction away

from the coast, flattening the area

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

43	

Beach Agent Code

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

44	

Beach Agents
 Varying beach width

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

45	

Mountain Agents
 Start at random positions and directions
 Move forward, continuously elevating a

wedge, creating a ridge
 Turn randomly without 45 degrees from

the initial course
 Periodically offshoot “foothills”

perpendicular to movement direction

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

46	

Mountain Agent Code

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

47	

Mountain Agents
 Narrow vs. wide features

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

48	

River Agents
 Move from a random point on the coast

towards a random point on a mountain
ridge

 “Wiggle” along the path
 Stop when reaching too high altitudes
 Retrace the path down to the ocean,

deepening a wedge along the path

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

49	

River Agent Code

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

50	

River Agents
 A dry river, and the outflow of three rivers

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

51	

In What Order?
 Doran and Parberry suggest

 Coastline
 Landform
 Erosion

 But the “Implementation” suggests
random order

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

52	

Further Questions
 Parameters... what parameters?
 What features of landscapes do we want

to be able to specify?
 How can the human and the algorithm

interact productively?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

53	

54	

Self Similarity
 Level of detail remains the same as we

zoom in
 Example

 Surface roughness, or silhouette, of mountains
is the same at many zoom levels

 Difficult to determine scale

 Types of fractals
 Exactly self-similar
 Statistically self-similar

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Example:
Ferns

55	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

56	

Fractals and Self-Similarity
 Exact Self-similarity

  Each small portion of the fractal is a reduced-scale
replica of the whole (except for a possible rotation
and shift).

 Statistical Self-similarity
  The irregularities in the curve are statistically the

same, no matter how many times the picture is
enlarged.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

57	

Fractal Coastline

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

58	

Examples of Fractals
 Modeling mountains (terrain)
 Clouds
 Fire
 Branches of a tree
 Grass
 Coastlines
 Surface of a sponge
 Cracks in the pavement
 Designing antennae (www.fractenna.com)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

59	

Examples of Fractals: Trees

 Fractals appear “the same” at every scale.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

60	

Examples of Fractals: Mountains

Images: www.kenmusgrave.com	
R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

61	

Examples of Fractals: Clouds

Images: www.kenmusgrave.com	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

62	

Examples of Fractals: Fire

Images: www.kenmusgrave.com	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

63	

Examples of Fractals: Comets?

Images: www.kenmusgrave.com	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

64	

Koch Curves
 Discovered in 1904 by Helge von Koch
 Start with straight line of length 1
 Recursively

 Divide line into three equal parts
 Replace middle section with triangular bump

with sides of length 1/3
 New length = 4/3

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

65	

Koch Snowflake
 Can form Koch snowflake by joining three Koch

curves
 Perimeter of snowflake grows as:

 where Pi is the perimeter of the ith snowflake
iteration

 However, area grows slowly as S∞ = 8/5!
 Self similar

  Zoom in on any portion
  If n is large enough, shape is the same
 On computer, smallest line segent > pixel spacing

€

Pi = 3 4 3()
i

www.jimloy.com	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

66	

Koch Snowflake

S3	
 S4	
 S5	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

67	

Fractal Dimension – Eg. 2
The Sierpinski Triangle

!
"

#
$
%

&
=

s

ND
1

log

log

N = 3, s = ½
 ∴D =1.584

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

68	

Space-Filling Curves
 There are fractal curves which

completely fill up higher dimensional
spaces such as squares or cubes.

 The space-filling curves are also
known as Peano curves (Giuseppe
Peano: 1858-1932).

 Space-filling curves in 2D have a
fractal dimension 2.

You’re not expected to be able to prove this.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

69	

Space-Filling Curves

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

70	

Space-Filling Curves in 3D

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

71	

Generating Fractals
 Iterative/recursive subdivision techniques

 Grammar based systems (L-Systems)
  Suitable for turtle graphics/vector devices

 Iterated Functions Systems (IFS)
  Suitable for raster devices

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

72	

L-Systems
(“Lindenmayer Systems”)

 A grammar-based model for generating simple
fractal curves
  Devised by biologist Aristid Lindenmayer for modeling

cell growth
  Particularly suited for rendering line drawings of fractal

curves using turtle graphics

 Consists of a start string (axiom) and a set of
replacement rules
  At each iteration all replacement rules are applied to the

string in parallel

 Common symbols:
  F Move forward one unit in the current direction.
  + Turn right through an angle A.
  - Turn left through an angle A.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

73	

The Koch Curve
Axiom: F (the zeroth order Koch curve)
Rule: F → F-F++F-F
Angle: 60°

First order:

 F-F++F-F

Second order:

F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F

60

120

Order

0

1

2

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

74	

The Dragon Curve
Axiom: FX
Rules:
 F → ∅
 X → +FX––FY+
 Y → –FX++FY–
Angle: 45 °

At each step,
replace a straight
segment with a
right angled
elbow.

Alternate right and
left elbows.

FX and FY are
“embryonic” right
and left elbows
respectively.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

75	

L-System code
import turtle
turtle.speed(0) # Max speed (still horribly slow)

def draw(start, rules, angle, step, maxDepth):
 for char in start:
 if maxDepth == 0:
 if char == 'F': turtle.forward(step)
 elif char == '-': turtle.left(angle)
 elif char == '+': turtle.right(angle)
 else:
 if char in rules: # rules is a dictionary
 char = rules[char]
 draw(char, rules, angle, step, maxDepth-1)
Dragon example:
draw("FX",{'F':"",'X':"+FX--FY+",'Y':"–FX++FY–"}, 45, 5, 10)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

76	

Generalized Grammars
 The grammar rules in L-systems can be further

generalized to provide the capability of drawing
branchlike figures, rather than just continuous
curves.

 The symbol [is used to store the current state
of the turtle (position and direction) in a stack
for later use.

 The symbol] is used to perform a pop
operation on the stack to restore the turtle’s
state to a previously stored value.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

77	

Generalized Grammars
Fractal bush:
 S → F
 F → FF-[-F+F+F]+[+F-F-F]
 (A = 22 degs.)

Zero order bush
 F

First order bush
Fourth order bush
(with 90 deg. rotation)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

78	

Random Fractals
 Natural objects do not contain identical scaled

down copies within themselves and so are not
exact fractals.

 Practically every example observed involves
what appears to be some element of
randomness, perhaps due to the interactions of
very many small parts of the process.

 Almost all algorithms for generating fractal
landscapes effectively add random irregularities
to the surface at smaller and smaller scales.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

79	

Random Fractals
 Random fractals are

  randomly generated curves
that exhibit self-similarity, or

  deterministic fractals modified
using random variables

 Random fractals are used to
model many natural shapes
such as trees, clouds, and
mountains.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

80	

Random Midpoint Displacement
Algorithm (2D)

g A B
C   Subdivide a line segment into two

parts, by displacing the midpoint by
a random amount “g”. i.e., y-
coordinate of C is

 yC = (yA + yB)/2 + g

  Generate g using a Gaussian
random variable with zero mean
(allowing negative values) and
standard deviation s.

  Recurse on each new part
  At each level of recursion, the

standard deviation is scaled by a
factor (1/2)H
  H is a constant between 0 and 1
  H = 1 in the example on the right

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

81	

Midpoint Displacement Algorithm
(3D)
Square-Step:
Subdivide a ground square into
four parts, by displacing the
midpoint by a Gaussian
random variable g with mean
0, std dev s.
 i.e., Compute y-coordinate
of E as
yE = (yA + yB + yC + yD)/4 + g

Z

X

A B

C D

E

Do that for all squares in the grid
(only 1 square for the first iteration).
Then ...
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

82	

Diamond step
 To get back to a regular grid, we now need

new vertices at all the edge mid-points too.

 For this we use a diamond step:

Vertices before square step

New vertices from square step

Vertex from diamond step
(on an old edge midpoint).
Computed as in square step but
using the 4 diamond vertices.

Do this for all edges (i.e., all possible diamonds).

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

83	

Diamond step (cont’d)

“Reflect” vertices at grid edges to make diamonds there.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

84	

Diamond-Square Algorithm
 The above two steps

are repeated for the
new mesh, after
scaling the standard
deviation of g by
(1/2)H. And so on …

H=0.8

H=0.4

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

85	

Diamond Step Process

 1st pass 2nd pass 5th pass

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

86	

Height Maps
 The 2D height map obtained using the

diamond-square algorithm can be used to
generate fractal clouds.

 Use the y value to generate opacity.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

87	

Useful Links
  Terragen – terrain generator

  http://www.planetside.co.uk/terragen/

  Generating Random Fractal Terrain
  http://www.gameprogrammer.com/fractal.html

  Lighthouse 3D OpenGL Terrain Tutorial
  http://www.lighthouse3d.com/opengl/terrain/

  Book about Procedural Content Generation
  Noor Shaker, Julian Togelius, Mark J. Nelson, Procedural Content

Generation in Games: A Textbook and an Overview of Current
Research (Springer), 2014.

  Book about Procedural Generation
 David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steve
Worley. Texturing and Modeling: A Procedural Approach (The
Morgan Kaufmann Series in Computer Graphics)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Source for Most of this Material
 Much of the material covered in this

lecture came from excellent material from
a course on Procedural Content
Generation by Julian Togelius, and a good
book by Julian, Noor Shaker, and mark
Nelson from ITU:
 http://game.itu.dk/
 http://pcgbook.com/

R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

88	

