
IMGD 3000 - Technical Game
Development I:

Game Engine Structure

by

Robert W. Lindeman
gogo@wpi.edu

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

2	

The User Experience
 You spawn into an outdoor scene

 Flag waving
 Waterfall
 Trees
 Rocks
 A bridge
 A satellite dish

 You shoot at the rocks
 A projectile

 Animate vs. inanimate objects

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

3	

The Engine Experience
 Engine must provide support for your

world
 Load the scene objects
 Place inanimate objects
 Place you
 Make the flag wave, the water fall
 Make your projectile fly/hit/disappear
 Show you everything

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

4	

High-Level Engine Code
 Basic game loop:

InitializeObjects();

while(gameNotFinished) {
// Handle user input
// (mouse, keyboard, gamepad, etc.)
// Update objects in the world
// Render the World

}

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

5	

Digging Deeper: Initialization
ResourceResult GameWorld::Preprocess(void) {
 ResourceResult result = World::Preprocess();
 if(result != kResourceOkay) return(result);
 SetCamera(&spectatorCamera);
 playerCamera = &firstPersonCamera;
 spawnLocatorCount = 0;
 CollectZoneMarkers(GetRootZone());
 const Marker *marker = GetFirstSpectatorLocator();
 if(marker) {
 // Initialize spectatorCamera to the marker's

 // position and direction.
 else {
 spectatorCamera.SetNodePosition(Point3D(0.0F, 0.0F, 1.0F));
 }
 return(kResourceOkay);
}

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

6	

Digging Deeper: User Input
 C4 defines a singleton called
TheInputMgr

 Singleton?
 The input manager dispatches actions to

your code
 You need to

 subclass the Action class

 Define Begin() and End() methods
 Bind the action to the instance you want to use

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

7	

Game Engine Flow
 Load program
 Initialize variables
 Load mission/level information
 Place objects/NPCs into world
 Schedule events
 Start clock
 Spawn player
 Handle events

 Generated by player(s), NPCs, or timers

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

8	

Multiplayer: Server
 Start server

 Like previous slide
 Events include clients joining

 Spawn player
 Receive updates from clients
 Update global state

 Maintain the world state

 Disseminate state changes
 To clients
 To other servers

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

9	

Multiplayer: Client
 Load client code
 Search for a server

 Choose wisely!

 Establish connection
 Receive current game state
 Render game to user
 Receive

 Input from user
 Updates from server

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

10	

Game Engines
 Scene graph

  Representation of the world
  Includes characters

 Timing is very important
  Events

 Time-based
 Multi-player

  Synchronization

 Database of objects
 Networking

  Between Server and clients
  Between Servers

Origin	

Transform	

Castle	

Drawbridge	

 Moat	

Transform	

Transform	

Dragon	

Player	

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

11	

Game Graphics
 Different from other media

  Need to process and display @ 30 fps
 Dynamic scenes

 Graphics Processing Units (GPUs) are now
programmable
  Need to understand how to program for them
  nVidia's cg programming language, OpenGL 2.0

extensions, GLSL
  Stream-processing model
 Data must be packed into textures
  Limited control support

 Loops, stack data structures

 Good jobs here!

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

12	

Physics
 Need to consider how fast you can compute

  Scalable in the number of objects?
  Scalable in the types of objects?

 Cloth?
 Hair?
 Water?

 Three main types of objects
  Point masses
  Rigid bodies
  Soft bodies

 Life is a combination of physics and freewill
  How do we balance these?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

13	

Server Details
 Server performs multiple tasks concurrently

  Each WORKER is a separate thread
  How do they coordinate efforts?

WORKER	

Listen for client updates	

• One port per client?	

WORKER	

Update NPC state	

• Time	

• Behavior	

WORKER	

Transmit updates to
clients	

• Object state	

• Player state	

• Does this scale?	

WORKER	

Client join/leave process	

Initialize game	

• Load assets	

• Load map	

• Load add-ons (mods)	

• Initialize NPCs	

• Start WORKER threads	

• Start clock	

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

14	

Server Coordination
 Each worker has tables of interest

 Workers sleep until table data changes
 Database dispatcher monitors tables, wakes workers

WORKER	

Listen for client updates	

• One port per client?	

WORKER	

Update NPC state	

• Time	

• Behavior	

WORKER	

Transmit updates to
clients	

• Object state	

• Player state	

• Does this scale?	

WORKER	

Client join/leave process	

Initialize game	

• Load assets	

• Load map	

• Load add-ons (mods)	

• Initialize NPCs	

• Start WORKER threads	

• Start clock	

Game
Data
Tables	

WORKER	

Database event dispatcher	

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

15	

Even More Server Details
  For this to work, you need

  Threads
  Inter-process/thread Communication

  Sockets
  Shared memory

  Some way of doing timing
  Callback
  Interrupt handler

  An efficient data store

  In order to do it well, you also need
  Thorough understanding of systems programming
  A very good design, and lots of it!
  You should have seen this in CS-3013: OS, and

 CS-2303: Systems Programming Concepts

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

16	

Client/Server Approach
 Requires messages to be passed

 Network could be bottleneck
 Server could be bottleneck

 Lag is bad
 Example: the player you shoot at is

"magically" not there anymore by the time
the projectile gets to him

 Inconsistent state is bad
 Who grabbed that object first?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

17	

Client/Sever Programming
 Make it easy on the programmer

 Hide the fact that things are being sent to
server

 Make "surrogates" for server objects
 Underlying system does actual

communication

 How can we make a system really
scalable to 1000s of users?
 How is this done in gaming systems?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

18	

Graphical User Interface
 Provides access to

 Game menus (e.g., save, load, boss)
 Player status (e.g., health, current speed)
 Maps

 Current play location
 Location of "persons of interest"
 Location of "goals"

 Non-Player Character (NPC) dialog
 Player-to-player chat

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

19	

C4 Scene Graph
 Everything in the scene is part of the

scene graph
 The scene graph is created (loaded) at

initialization
 At runtime, your game will manipulate

the nodes in the graph
 Update transformations (positions/orient.)
 Add nodes (e.g., projectiles)
 Delete nodes (e.g., health packs)

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

20	

Traversing the Scene Graph
 In C4, the root node is called the “infinite zone”

  All game elements must be part of a zone

 You can access the root node with the
World::GetRootNode() function

 Move through (traverse) the tree with
  GetFirstSubNode()
  GetNextNode()
  GetPreviousNode()
  etc.

 Look at the Tree class
 More on scene graphs later

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

21	

More on Nodes
 Search the C4 API for “hierarchy”

 Shows Node class hierarchy

 A transform is a matrix representing the
object’s position, orientation, and scale

 Two notions of a transform
 Local transform is relative to the immediate

parent node in the scene graph
 World transform is the absolute position in

world space

 Moving an object means updating its transform

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

22	

Game Loop, Revisited
 Can expand “Update objects in the

world” to:
 Starting at the root node in the scene graph,

traverse from parent to child nodes
recursively

 For each node, if certain conditions are met,
call some function to update the transform

 But how do you specify what code to call,
and under what conditions?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

23	

Geometry and Nodes
 Geometry (mesh) information is not

contained directly in the node
 It is stored in a GeometryObject
 See Set/GetObject() methods for

geometry nodes
 Separating them allows for instancing,

saving memory
 Each instance has its own transforms

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

24	

C4 Engine Structure
 Layered structure

 Base Services
 System Managers
 Large-Scale Architecture
 Plugin Modules
 Application (e.g., your game)

http://www.terathon.com/c4engine/architecture.php

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

25	

C4 Base Services
 File Manager
 Memory Manager
 Time Manager
 Resource Manager
 Math Library
 Utility Library
 System Utilities

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

26	

C4 System Managers
 Sound Manager
 Rendering Core
 Display Manager
 Graphics Manager
 Input Manager
 Network Manager

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

27	

C4 Large-Scale Architecture
 Interface Manager
 Message Manager
 Effect Manager (fluid, cloth, particles)
 Scene Graph
 Animation System
 Controller System
 World Manager
 Plugin Manager

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development	

28	

C4 Plugin Modules
 Import Tools (Collada, TGA files)
 World Editor
 Application Module
 Media players

 Model viewer
 Texture viewer
 Font generator
 Sound player
 Movie player

