
IMGD 3000 - Technical Game
Development I:

Scene Management

by
Robert W. Lindeman

gogo@wpi.edu



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

2

Overview
Graphics cards can render a lot, very fast

 But never as much, or as fast as we'd like!

Intelligent scene management allows us
to squeeze more out of our limited
resources
 Scene graphs
 Scene partitioning
 Visibility calculations
 Level of detail control



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

3

Scene Graphs
A specification of object and attribute

relationships
 Spatial
 Hierarchical
 Material properties

Transformations
Geometry
Easy to attach objects together

 Riding a vehicle



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

4

Scene Graphs (cont.)
Can use instances to save resources

 Geometry handles instead of geometry
 Texture handles

To take advantage of GPUs, reducing the
amount of shader (cg) and texture
switching is preferred



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

5

Geometry Sorting and Culling
Keys to scene management

 Render only what can be seen
 Render at a satisfactory, perceivable fidelity
 Pre-process what you can
 Use GPU as efficiently as you can

First-level
 View-frustum culling
 Back-face culling
 Bounding sphere

One or more acceleration structures
can be used



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

6

Acceleration Structures
Hierarchical bounding structures

 Test if parent is visible
 If not, then none of its children are
 If so, then recursively check the children

Could use information about your
application to optimize approach
 Many interior levels have cells and portals
 No need to solve the general problem, just

the specific one



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

7

Acceleration Structures
Many structures exist

 Appropriateness depends on the scene, and
the game (e.g., dynamic objects)

Space partitioning
 Uniform Grid
 Quad/Oct Tree
 Binary-Space Partitioning (BSP) trees
 k-d trees

Geometry partitioning
 Bounding boxes/spheres/capsules



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

8

Acceleration Structures -
Space Partitioning
Uniform Grids

 Split space up into equal sized (or an equal
number of) cells

Quad (Oct) Trees
 Recursively split space into 4 (8) equal-sized

regions

Binary-Space Partitioning (BSP) trees
 Recursively divide space along a single,

arbitrary plane

k-dimensional trees (k-d trees)
 Recursively



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

9

Acceleration Structures -
Object Partitioning
Bounding boxes/spheres/capsules
Axis-Aligned Bounding Boxes (AABB)
Oriented Bounding Boxes (OBB)
Discrete Oriented Polytope (DOP)

 Polytope: 2D = polygon, 3D = polyhedron
 k-DOP: k planes in a DOP
 Common: 6-DOP (AABB), 10-DOP, 18-DOP,

24-DOP

Bounding-Volume Hierarchies (BVHs)



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

10

Cell-Portal Visibility
 Keep track of which cell the viewer is in

 Somehow enumerate all the visible regions

 Cell-based
 Preprocess to identify the potentially visible set (PVS)

for each cell

 Point-based
 Compute at runtime

 Trend is toward point-based, but cell-based is
still very common
 Why choose one over the other?



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

11

Visibility of Cells
 Point-based algorithms compute visibility from

a specific point
 Which point?
 How often must you compute visibility?

 Cell-based algorithms compute visibility from
an entire cell
 Union of the stuff visible from each point in the cell
 How often must you compute visibility?

 Which method has a smaller potentially visible
set?

 Which method is suitable for pre-computation?



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

12

Potentially Visible Set (PVS)
 PVS: The set of cells/regions/objects/polygons

that can be seen from a particular cell
 Generally, choose to identify objects that can be seen
 Trade-off is memory consumption vs. accurate

visibility

 Computed as a pre-process
 Have to have a strategy to manage dynamic objects

 Used in various ways:
 As the only visibility computation - render everything

in the PVS for the viewer’s current cell
 As a first step - identify regions that are of interest

for more accurate run-time algorithms



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

13

Cell-to-Cell PVS
 Cell A is in cell B's PVS if there exists a stabbing

line from a portal of B to a portal of A
 Stabbing line: a line segment intersecting only portals
 Neighbor cells are trivially in the PVS

I J

H

GA

C
B E

F
D

PVS for I contains:
B, C, E, F, H, J



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

14

Eye-to-Region Example (1)

View



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

15

Eye-to-Region Example (2)



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

16

Putting it all Together
The "best" solution will be a combination

 Static things
Oct-tree for terrain
Cells and portals for interior structures

 Dynamic things
Quick reject using bounding spheres
BVHs for objects

Balance between pre-computation and
run-time computation



R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

17

References
 http://www.cs.wisc.edu/graphics/Courses/679-f2003/


