
IMGD 3000 - Technical Game
Development I:

Game Engine Structure

by
Robert W. Lindeman

gogo@wpi.edu

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

2

The User Experience
You spawn into an outdoor scene

 Flag waving
 Waterfall
 Trees
 Rocks
 A bridge
 A satellite dish

You shoot at the rocks
 A projectile

Animate vs. inanimate objects

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

3

The Engine Experience
Engine must provide support for your

world
 Load the scene objects
 Place inanimate objects
 Place you
 Make the flag wave, the water fall
 Make your projectile fly/hit/disappear
 Show you everything

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

4

High-Level Engine Code
Basic game loop:

InitializeObjects();

while(gameNotFinished) {
// Handle user input
// (mouse, keyboard, gamepad, etc.)
// Update objects in the world
// Render the World

}

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

5

Digging Deeper: Initialization
ResourceResult GameWorld::Preprocess(void) {
 ResourceResult result = World::Preprocess();
 if(result != kResourceOkay) return(result);
 SetCamera(&spectatorCamera);
 playerCamera = &firstPersonCamera;
 spawnLocatorCount = 0;
 CollectZoneMarkers(GetRootZone());
 const Marker *marker = GetFirstSpectatorLocator();
 if(marker) {
 // Initialize spectatorCamera to the marker's
 // position and direction.
 else {
 spectatorCamera.SetNodePosition(Point3D(0.0F, 0.0F, 1.0F));
 }
 return(kResourceOkay);
}

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

6

Digging Deeper: User Input
C4 defines a singleton called
TheInputMgr

Singleton?
The input manager dispatches actions to

your code
 You need to

 subclass the Action class

Define Begin() and End() methods
Bind the action to the instance you want to use

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

7

Game Engine Flow
Load program
Initialize variables
Load mission/level information
Place objects/NPCs into world
Schedule events
Start clock
Spawn player
Handle events

 Generated by player(s), NPCs, or timers

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

8

Multiplayer: Server
Start server

 Like previous slide
 Events include clients joining

Spawn player
Receive updates from clients
Update global state

 Maintain the world state

Disseminate state changes
 To clients
 To other servers

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

9

Multiplayer: Client
Load client code
Search for a server

 Choose wisely!

Establish connection
Receive current game state
Render game to user
Receive

 Input from user
 Updates from server

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

10

Game Engines
 Scene graph

 Representation of the world
 Includes characters

 Timing is very important
 Events

 Time-based
 Multi-player

 Synchronization

 Database of objects
 Networking

 Between Server and clients
 Between Servers

Origin

Transform

Castle

Drawbridge Moat

TransformTransform

DragonPlayer

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

11

Game Graphics
 Different from other media

 Need to process and display @ 30 fps
 Dynamic scenes

 Graphics Processing Units (GPUs) are now
programmable
 Need to understand how to program for them
 nVidia's cg programming language, OpenGL 2.0

extensions, GLSL
 Stream-processing model
 Data must be packed into textures
 Limited control support

 Loops, stack data structures

 Good jobs here!

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

12

Physics
 Need to consider how fast you can compute

 Scalable in the number of objects?
 Scalable in the types of objects?

 Cloth?
 Hair?
 Water?

 Three main types of objects
 Point masses
 Rigid bodies
 Soft bodies

 Life is a combination of physics and freewill
 How do we balance these?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

13

Server Details
 Server performs multiple tasks concurrently

 Each WORKER is a separate thread
 How do they coordinate efforts?

WORKER
Listen for client updates
•One port per client?

WORKER
Update NPC state
•Time
•Behavior

WORKER
Transmit updates to
clients
•Object state
•Player state
•Does this scale?

WORKER
Client join/leave process

Initialize game
•Load assets
•Load map
•Load add-ons (mods)
•Initialize NPCs
•Start WORKER threads
•Start clock

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

14

Server Coordination
 Each worker has tables of interest

 Workers sleep until table data changes
 Database dispatcher monitors tables, wakes workers

WORKER
Listen for client updates
•One port per client?

WORKER
Update NPC state
•Time
•Behavior

WORKER
Transmit updates to
clients
•Object state
•Player state
•Does this scale?

WORKER
Client join/leave process

Initialize game
•Load assets
•Load map
•Load add-ons (mods)
•Initialize NPCs
•Start WORKER threads
•Start clock

Game
Data

Tables

WORKER
Database event dispatcher

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

15

Even More Server Details
 For this to work, you need

 Threads
 Inter-process/thread Communication

 Sockets
 Shared memory

 Some way of doing timing
 Callback
 Interrupt handler

 An efficient data store

 In order to do it well, you also need
 Thorough understanding of systems programming
 A very good design, and lots of it!
 You should have seen this in CS-3013: OS, and

CS-2303: Systems Programming Concepts

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

16

Client/Server Approach
Requires messages to be passed

 Network could be bottleneck
 Server could be bottleneck

Lag is bad
 Example: the player you shoot at is

"magically" not there anymore by the time
the projectile gets to him

Inconsistent state is bad
 Who grabbed that object first?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

17

Client/Sever Programming
Make it easy on the programmer

 Hide the fact that things are being sent to
server

Make "surrogates" for server objects
 Underlying system does actual

communication

How can we make a system really
scalable to 1000s of users?
 How is this done in gaming systems?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

18

Graphical User Interface
Provides access to

 Game menus (e.g., save, load, boss)
 Player status (e.g., health, current speed)
 Maps

Current play location
 Location of "persons of interest"
 Location of "goals"

 Non-Player Character (NPC) dialog
 Player-to-player chat

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

19

Rob, stop here…
I said STOP!

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

20

C4 Scene Graph
Everything in the scene is part of the

scene graph
The scene graph is created (loaded) at

initialization
At runtime, your game will manipulate

the nodes in the graph
 Update transformations (positions/orient.)
 Add nodes (e.g., projectiles)
 Delete nodes (e.g., health packs)

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

21

Traversing the Scene Graph
 In C4, the root node is called the “infinite zone”

 All game elements must be part of a zone

 You can access the root node with the
World::GetRootNode() function

 Move through (traverse) the tree with
 GetFirstSubNode()
 GetNextNode()
 GetPreviousNode()
 etc.

 Look at the Tree class

 More on scene graphs later

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

22

More on Nodes
 Search the C4 API for “hierarchy”

 Shows Node class hierarchy

 A transform is a matrix representing the
object’s position, orientation, and scale

 Two notions of a transform
 Local transform is relative to the immediate

parent node in the scene graph
 World transform is the absolute position in

world space

 Moving an object means updating its transform

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

23

Game Loop, Revisited
Can expand “Update objects in the

world” to:
 Starting at the root node in the scene graph,

traverse from parent to child nodes
recursively

 For each node, if certain conditions are met,
call some function to update the transform

But how do you specify what code to call,
and under what conditions?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

24

Controllers
One way to change a node’s transform is

through the use of a controller
The Node class has Set/GetController()

methods
Controller class has Move() method

 This is what is called during traversal
 This is where you put your transform update

code
 Actually, you can update the transform of
any nodes from this method!

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

25

Controllers (cont.)
As with many things, the controller class

makes heavy use of inheritance
 CollectableController
 DoorController
 LightningController
 RotationController
 CharacterController
 RocketController

Everything that has some kind of
behavior has a controller assigned to it
 Swinging lights? PendulumController

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

26

Controllers (cont.)
 What’s the difference between the Move() and
Travel() controller methods?
 Movement code goes in Move(), and tells C4 where

you want your object to go.
 Travel() is used to apply any corrective movement

caused by things like collisions

 The collision system tries to move each object,
and checks for collisions
 In Travel(), if a collision happened, handle it. If not,

set the position to the final position calculated in
Move().

 You need to tell the sysem what to do once a collision
happens in the Travel() method.

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

27

Final Notes on Controllers
If you want to animate something

 Make sure that the associated node has a
controller assigned to it

 Add your code to update the transform in the
Move() method of the controller

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

28

Geometry and Nodes
Geometry (mesh) information is not

contained directly in the node
 It is stored in a GeometryObject
See Set/GetObject() methods for

geometry nodes
Separating them allows for instancing,

saving memory
Each instance has its own transforms

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

29

C4 Engine Structure
Layered structure

 Base Services
 System Managers
 Large-Scale Architecture
 Plugin Modules
 Application (e.g., your game)

http://www.terathon.com/c4engine/architecture.php

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

30

C4 Base Services
File Manager
Memory Manager
Time Manager
Resource Manager
Math Library
Utility Library
System Utilities

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

31

C4 System Managers
Sound Manager
Rendering Core
Display Manager
Graphics Manager
Input Manager
Network Manager

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

32

C4 Large-Scale Architecture
Interface Manager
Message Manager
Effect Manager (fluid, cloth, particles)
Scene Graph
Animation System
Controller System
World Manager
Plugin Manager

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

33

C4 Plugin Modules
Import Tools (Collada, TGA files)
World Editor
Application Module
Media players

 Model viewer
 Texture viewer
 Font generator
 Sound player
 Movie player

