

IMGD 1001 - The Game Development Process: File Formats

by

Robert W. Lindeman (gogo@wpi.edu) **Kent Quirk** (<u>kent_quirk@cognitoy.com</u>) (with lots of input from Mark Claypool!)

Why we care

- Because different formats have different advantages
- No one format solves everything

Format's Last Theorem

Simplicity

- Easy to write
- Easy to read
 - They're not the same
- Text-based formats (XML) are easy
- Some data formats are easy
 - + TGA
 - BMP
 - WAV

Universality

- Can the file format handle all the desired variants within the file type?
- Images have:
 - Grayscale vs color
 - Paletted
 - Resolution (number of pixels)
 - Color resolution (bits per pixel)
 - Compression techniques
- Sounds:
 - Bit rate, resolution, compression

Universality in 3D

For 3D objects, we have:

- Polygon mesh
- Normal data
- NURBS control points
- Texture coordinates
- Textures, Normal maps, bump maps
- Lighting information
- Shaders
- Physics data
- Animation bones, joints, constraints

Universality in 3D

- There's SO MUCH
- Either:
 - Everyone has to read it all and ignore the parts they don't want
 - Or everyone has to write it all even if they don't manipulate it
- Basically impossible to create a universal file format
- So in games, we use exporters / plugins

Efficiency

- What do we mean?
 - Stored file size
 - As small as possible
 - Performance on save
 - Performance on load
- But there are tradeoffs
 - Speed vs size
 - Accuracy vs size
 - Compression vs decompression

Compression (1 of 2)

- Information Theory: Claude Shannon
 - Entropy is a measure of the irreducible quantity of information
 - Tied to quantum mechanics and heat
 - Creating / destroying information requires energy
 - When you've eliminated all the redundancy, you have a measure of the information in a system
 - Can't compress it more than that without losing some.

Compression (2 of 2)

- Sometimes some information loss is OK
- The details don't always matter
- "Lossy compression":
 - Compression where information is deliberately destroyed, with the intent of losing the information that is perceptually unimportant
 - Ex: the details of every hair on someone's arm in a portrait

This is what JPEG (images) and MPEG (sound) do

JPEG compression example

• Original image

JPG compression (Photoshop, zoomed in)

How JPEG works (1 of 3)

- Convert the image to YCbCr (like HDTV)
 Y = brightness
 - Cb, Cr are "chrominance" (color)
 - Humans more sensitive to Y, so emphasize it (use more bits) and use fewer bits for Cb, Cr
- Chop the image up into squares of 8x8 pixels
 - You can see them in the level 0 image:

How JPEG works (2 of 3)

- For each block of pixels in each channel
 - Convert to frequency domain
 - Remember Fourier analysis from calculus?
 - JPEG uses Discrete Cosine Transform, but it's similar
 - Convert to a linear combination of the following images
- Now discard some portion
 Starting with the lower right

How JPEG works (3 of 3)

A few image formats

Choosing formats

- Decide what you really need
- Look for libraries that solve your problem
 - But sometimes the libraries themselves can be the problem!
 - Fonts are often encumbered with licensing issues
 - Check the licensing!
 - Some libraries are so big that you lose the space you would have saved
- If you have to write it yourself, favor simplicity