
Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

IMGD 1001 - The Game
Development Process:

 Intro to Programming

by

Robert W. Lindeman (gogo@wpi.edu)

Kent Quirk (kent_quirk@cognitoy.com)

(with lots of input from Mark Claypool!)

mailto:kent_quirk@cognitoy.com
mailto:kent_quirk@cognitoy.com

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Exam
• Flow
• Functional Symmetry
• Keyframes
• Handedness

2

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Intro to Game Programming
• What is it?
• Types of programming
• Language survey
• Categories of languages

3

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Back in the day...
• Games were created by one or two

programmers in a garage
✦ They didn’t necessarily know how to make

good games
• Exceptions: Wright, Pajitnov, Meier

• Now, programmers make systems
✦ Designers and artists make the content

• Except casual / mobile
✦ But even there most of the successful

companies are teams

4

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Areas of Specialization
• Engine

✦ Architecture
✦ Physics
✦ UI / Interaction

• Network
• Graphics
• AI
• Scripting / Level design
• Tools

5

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Engine programming
• The platform that runs the game
• It’s a system, requires high-level and low-

level thinking (architecture)
✦ What does an architect do?

• Integrates Physics and provides the UI
operating environment

• Usually C++ (why?)
• Key background: Software Engineering

6

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Networking
• A specialization of its own
• Includes multitasking and scalability
• Server side and client side
• Can be hugely complex

✦ Particularly for MMOs

• Key background: Computer Science

7

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

AI / Scripting / Level Design
• AI is its own subspecialty

✦ Again, CS is valuable
✦ But often reinvented by non-CS people

• Not very good
• But - that might not be bad! Sometimes

gameplay is better for simpler AI
✦ People are easily fooled

• Sometimes coded by the designers
• Often done in a scripting language or

something easily tweaked and tuned

8

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Tools
• Many games need tools for production

✦ Sometimes in-house only
✦ Sometimes also shipped to customer for mods

• Just-in-time programming, often.
• Scripting language, batch files,

whatever’s at hand
✦ Skimping on tools can cost you a lot!
✦ People are a lot more expensive than software

• Even expensive software
• Not always true for students and startups

9

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Generalists
• Valuable to have someone who knows a

little bit of everything
• They’ll integrate and cross-pollenate
• But too many of them can lead to chaos
• General rule:

✦ Specialize for a while, but “sharpen the saw”
from time to time.

10

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Survey of key programming
languages
• C++
• Java
• Scripting Languages
• Flash

11

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

C++ (1 of 3)
• Until mid ‘90s, C was the systems

programming language of choice
✦ But it wasn’t “Object-oriented” and didn’t

scale well to larger projects

• C++ created to take C to the next level
• Calling it “A better C” is too limiting

✦ C is a well-tuned bicycle
✦ C++ is a large tractor-trailer

• With a sleeper cab
• Filled with tools

12

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

C++ (2 of 3)
• Supports large scale programming with:

✦ Strong typing
✦ Objects
✦ Exceptions
✦ Cross-platform toolset
✦ Templates
✦ Metaprogramming

• Industry standard
✦ Everyone uses it

• Few use it well -- it’s just too big

13

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

C++ (3 of 3)
• Many libraries available (middleware)

✦ OpenGL
✦ DirectX
✦ Standard Template Library
✦ Game Engines
✦ Video / Audio tools

14

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

C++ (Summary)
• When to use?

✦ Any code where performance is crucial
• Used to be all -- now game engine such as

graphics and (sometimes) AI
• Game-specific code is often not C++

✦ If you have a legacy code base, expertise
✦ If your middleware libraries expect it

• When not to use?
✦ Tool building (GUIs are tough)
✦ High-level game tasks (technical designers)

15

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Java (1 of)
• Basically, created to be the Object-

oriented language for the web
✦ Designed by theorists
✦ Sometimes gives short shrift to practicality

• Very portable
✦ “Write once, run everywhere”

• In reality: Write once, debug everywhere
✦ From desktops to cellphones

16

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Java (2 of 3)
• Concepts from C++

✦ But cleaner
✦ Abstract away the hardware and many of the

standard bugs
• Memory management
• Simpler templates
• Introspection

✦ Portability a huge design feature
✦ Performance sometimes a problem

• Virtual machine, JIT compiler
• 2-10x slower (who cares?)

17

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Java (3 of 3)
• Only recently useful for games

✦ Cell phone games
✦ Web games
✦ Project Darkstar from Sun
✦ Java 3D

• Used in:
✦ Star Wars Galaxies
✦ You Don’t Know Jack
✦ Cell phone games
✦ Lots of server-side stuff

18

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Scripting Languages
• Really means “Languages you don’t have

to compile first”
✦ Kind of a slam
✦ In 1990 there was a huge difference between

compiled and “interpreted” languages
• Modern technology has blurred it all

• Many (most) games use one
✦ Use one once you find your data starts getting

smart.
✦ You need one if your data file wants to do:
center = (left + right) / 2

19

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Scripting Languages (2)
• Can get very powerful

✦ Entire UI systems
✦ AI and level design

• If done right, provides a nice separation
of engine and gameplay

• Easier to program for game and level
designers
✦ But you probably still need professional

developers to design the big picture.

• Fast iterations!
20

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Scripting Languages (3)
• Code can become an asset

✦ Edited / modified as part of content

• Performance can be an issue
✦ Scripting systems vary wildly
✦ Be smart about it

• Tools may be weak
✦ But you don’t need them as much

• Interface to game needs maintenance

21

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Scripting Languages: Python
• Object-oriented (“OO”)
• Large(ish) memory hit
• Many tools, growing population of

programmers knows it
• You can write whole games in it

✦ PyGame

• Integrates well, with effort
• Blender (tool), Eve Online, Civ 4, Cosmic

Blobs

22

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Scripting Languages: Lua
• (“loo-uh”)

✦ Small, C-like
✦ Not OO
✦ Really easy to embed
✦ Popular choice -- but limits your capabilities

• Doesn’t scale well to large systems
✦ Grim Fandango, Far Cry, Baldur’s Gate

23

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Scripting Languages: Other
• Ruby, Perl

✦ Save ‘em for the web - they don’t embed well

• Can use Java as embedded language
• JavaScript / ECMAScript is better
• .NET / Mono
• Home Grown

✦ Just say no -- It’s harder than it looks and
really hard to make a good one

✦ Exception if it’s really specialized - a Domain-
Specific Language

24

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Scripting Languages: Flash
• Flash is the authoring tool (IDE), the

player, the application files
• Advantages

✦ Wide audience (V8 - 98%, V9 - 93%)
✦ Great for downloadable games
✦ Rapid development, esp. for artists

• Disadvantages
✦ Lousy for big systems
✦ Performance poor before V9
✦ Grown, not designed -- programmers cry

25

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

More Flash
• Timeline-based system

✦ Objects located in space and time
✦ Attach scripts to objects and events

• Vector-based graphics
✦ Infinitely scalable
✦ Can be very fast

• Programming language
✦ OO after version 8 (ActionScript 2)
✦ Version 9 MUCH faster (AS3)

• But big changes in language

26

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Language categories (1 of 2)
I. Low-Level: Assembly, GLSL

II. System / Structured: C, some BASIC

III. Object-oriented: C++, Java, BASIC, D

IV. Dynamic: Python, Ruby, Perl,
ActionScript, Javascript

V. Functional: Lisp, OCaml, Haskell,
Scheme

C++ can fit almost anywhere!

27

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Language categories (2 of 2)
• Easy to switch within a category -- more

work to step across categories; paradigm
shift required.

• Categories II and III easiest to learn and
teach

• Categories I, IV require paradigm shift
• Category V requires mental gymnastics

28

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

How to choose?
• Expertise matters...but not TOO much

✦ A good developer can easily pick up new
languages in the same class as the old ones

• Interface to other tools, middleware
• Performance matters

✦ But not as much as most people think
✦ Your performance instincts are probably wrong

• Developer performance matters most
✦ Time is money

29

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Building software
• It’s hard
• The bigger the system, the harder it gets
• It’s not asymptotic -- some systems

appear to be literally impossible to build
✦ Air traffic control

• Fred Brooks, The Mythical Man-Month
✦ “Adding resources to a late software product

makes it later”

30

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Methodologies
• A $100 way of saying “Methods”
• A collection of policies and procedures for

attempting to get control over software
development

• They have names:
✦ Code and Fix
✦ Waterfall
✦ Spiral
✦ Agile

31

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Methodologies: Code and Fix
• Really means “We have no methodology”
• All too common
• Little planning, straight to implementation
• Reactive, not proactive
• End with bugs

✦ If you add bugs faster than you fix them,
“death spiral”

✦ Generates crunch time (“EA Spouse”)

32

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Methodologies: Waterfall
• Plan the whole project first, then do it

✦ Requirements
✦ Design
✦ Implementation
✦ Testing
✦ Integration
✦ Maintenance

• Fragile when requirements can change
✦ Hint: They ALWAYS change

33

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Methodologies: Spiral
• Modified waterfall, but in smaller bites

✦ Only tackle the part you can see clearly
✦ Sometimes gets stakeholders nervous because

dates are hard to predict
• Hint: dates are always hard to predict

✦ Sometimes different pieces will be at different
stages (planning the AI while implementing
the engine, for example)

34

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Methodologies: Agile
• Goal: get the stakeholders involved in the

creation process
✦ Customers drive the features and the progress
✦ Admit you have no control, proceed day by

day
✦ Great for feature-driven products
✦ Can be tough for games -- where’s the

design?

35

