

IMGD 1001 - The Game Development Process: 3D Art

by

Robert W. Lindeman (gogo@wpi.edu) Kent Quirk (kent_quirk@cognitoy.com) (with lots of input from Mark Claypool!)

3D Art: Outline

- □ Preparing to Create
- Modeling Theory
 - Example
- ■Texturing
- □Lighting

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

2

Preparing to Create

- □ Using reference essential
 - Difference between mediocre and exceptional game
 - Gives you goals, direction, clues, motivation
- Ex: portrait of friend
 - Could: sit down, imagine friend, draw
 - Or, could: use photo and draw
 - Latter will include details didn't think of
 - Same holds for buildings, cars, etc.
- □ Reference is not "cheating"
 - Yeah, many want to create directly in minds, but using the right reference a skill in itself!

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 3

Based on Chapter 1, Creating the Art of the Game, by Matthew Omernick

How and Where to Collect Reference

- Search the 'net
 - Ex: Sofa, couch, lazy-boy, lounge chair
 - 2 minutes can provide a lot of details
- Books
 - Ex: on submarines for U-boat
- Movies
 - Ex: U-571
- Physical location
 - Ex: visit U-boat tour, tour country/climate of game. Even fantasy world has trees, etc.

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 4

Based on Chapter 1, Creating the Art of the Game, by Matthew Omernick

Concept Art

- ☐ Pre-visualize art for communication, color, inspiration
 - Establish "look and feel", like storyboarding for film
 - Saves time and money since iterate before rendering
- ☐ Even if company has concept artists, digital artists should still do their own
 - Remember, computer is just another tool
 - Figure drawing helps understand shape and line
 - And often required for portfolio!

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Based on Chapter 1, Creating the Art of the Game, by Matthew Omernick

Blocking Out Your Scene (1 of 3)

- Mantra
 - "Broad strokes, then add detail"
- Ex: painting mountain scene.
 - Start with blue sky, define brown mountains, lake. Finer brush for trees, clouds. Finer for rocks, birds in sky ...
 - Start in corner. Paint all details and move over. You'd go crazy! Would be skewed.
- Ex: animating a character.
 - Set two keyframes, point A and point B. Get speed right, basic idea. Add frames for up and down. Then legs and arms swing ...
 - When done, smooth walk

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 1, Creating the Art of the Game, by Matthew Omernick

- □ For scene, use simple primitives to define scale and layout
- Ex: create village.
 - Working with designer, create plane (crudely drawn map) of layout
 - □Scan and import into 3D tool (say, *Maya*)
 - Import 5'11" character (just shape)
 - □Use to decide how tall building or how wide door
 - Add objects in right scale
 - Quickly → basic, functional scene of right size and scale. Broad stroke number 1!

Tip: get artists & designers to agree upon measurement units & heights of characters

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 7

Based on Chapter 1, Creating the Art of the Game, by Matthew Omernick

Blocking Out Your Scene (3 of 3)

blocking Out Tour Scene (5 of 5)

- □ If game engine working, can export into game and run around
 - Often designer will do this, anyway, but artist should have input
- Can throw in some lighting (later) and colors (later)
- □Add a few textures (not final ones, but canned that show right feel)
 - Can even add text saying "brick"

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 8

Based on Chapter 1, Creating the Art of the Game, by Matthew Omernick

3D Art: Outline

- □ Preparing to Create
- Modeling Theory (next)
 - Example
- ■Texturing
- Lighting

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Intro to Modeling Theory

- □ Understand core philosophy of 3D modeling for games
- Want to do it fast and efficiently
 - Allow "broad strokes" in model early
 - More time (and polygon resources) for refinement later
- ☐ If quick, but sloppy, end up with stray vertices, overlapping faces...
 - Wasted resources
 - Plus bugs! For collision detection
- □ Modeling Types (talk about each a bit, next)
 - NURBS
 - Subdivision Surfaces
 - Polygon (is king in game development)

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Based on Chapter 6.2, Introduction to Game Development

Non-Uniform Rational Basis-Spline (NURBS) Surfaces

- ☐ Uses curved surfaces based on a few points
- Strengths:
 - Great for cut-scenes
 - Resolution independent
 - Inherent mapping coordinates
- Weaknesses:
 - More difficult to learn
 - Difficult transitioning between high and low density
 - Seams are complicated to overcome
 - Not supported by many game engines

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 6.2, Introduction to Game Development

Subdivision Surfaces

- Strengths
 - Has polygonal ease of editing (can manipulate points) with NURBS smoothness
 - Very efficient way to work
 - Great for cut-scenes or as the basis for high resolution normal-map source models
- Weaknesses
 - Almost no game engines support this geometry type

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Based on Chapter 6.2, Introduction to Game Development

Polygonal

- Strengths:
 - Very straightforward, easy to troubleshoot, easy to modify
 - Supported by all 3D game engines
- Weaknesses:
 - A technical process
 - Constantly manipulating topology
 - Faceting
 - Rough around the edges
 - Fixed Resolution
 - □ Unless level of detail models are created
- □ Polygons preferred since most used (talked about rest of section)
 - By pólygons, we mean triangles
 - Face may have triangles that share vertices (Ex: square down middle)
 - Software may hide shared edge for cleaner look

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

13

Based on Chapter 6.2, Introduction to Game Development

Polygonal Modeling Basics: Primitives

- Primitives are basic shapes
- Most 3D packages have same primitives:
 - Sphere, Cube, Cylinder, Plane
 - Use for "broad strokes"
- □ Concentrate on primitives within object
 - Ex: human body (ovals for shoulders, cylinders for legs, sphere for head...)
- □ *Components* are parts that make up primitive
 - Ex: vertices, edges, triangles, faces, elements
 - Similar across all packages, but terminology can vary
- □ Transformation allows moving, rotating, scaling object or component

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

14

Polygonal Modeling Basics: Normals

- □ Face normals are at right angle to polygon
 - Tell what direction it is facing, how to render, how to light will react
- □Viewed from other side, it is invisible
 - Fine if on inside (say, of solid cube)
- □ When debugging, pay attention to normals as well as polygons

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

15

Polygonal Modeling Basics: Backface Culling

- □Toggles display of faces that point away from view
 - (BOOK IS WRONG!)
 - When backface culling is OFF, see backwardfacing polygons through wireframe
 - When backface culling is ON, looks solid (backfaces not drawn)
- Makes display less cluttered

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

16

Polygons and Limits

- □ 3D Software renders scene of triangles like game
 - But 3D software slow (Toy Story 1 frame / 15 hrs)
 - Game is real time (30 frames / second)
- Need to limit polygons. Distribution depends upon world size and where needed.
 - Ex: *Medal of Honor* versus *Soul Caliber 2*. MH details spread across world, less on avatars. SC can have detailed avatars since only 2 in one ring.
- ☐ Think of *how many* polygons each item needs. Estimates, educated guesses. Then, make pass. (Tools will often give count)
 - Used wisely, can make detailed scenes with few

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 17

Based on Chapter 2, Creating the Art of the Game, by Matthew Omernick

Polygon Reduction

- □ Being able to model without wasting polygons important → takes practice
- □ Ask if a player will see face?
 - Ex: oil barrel as cylinder. Will see bottom? Nope, then delete.
- ☐ Are all faces necessary? Looks great, yeah, but some can be removed.
 - Ex: 12-sided cylinder still looks "round" with 8 sides? Then do it.
- □ Example exercise p30-31

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 18

Based on Chapter 2, Creating the Art of the Game, by Matthew Omernick

Modeling Tools

- Certain tools and techniques used 80-90% of the time

 (Bottom 3 used for next example)

□ Line Tool:

- Draw outline of object and extrude to get 3-d shape
 - Ex: profile of car. Use line tool. Then, extrude outward to get shape.
 "Broad stroke"
- Some risk in may have vertices and faces you don't need, but careful planning and practice helps

- Take component (often face), duplicating it, pulling pushing or scaling to refine model
 - □ Ex: take cube. Extrude face outward and smaller
 - □ Ex: take cube. Extrude part of face to make window

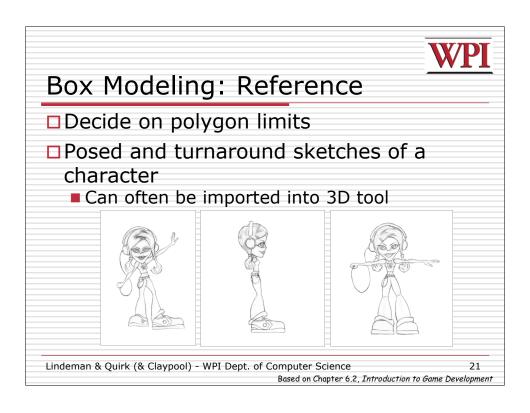
Subdivides faces and adds new faces

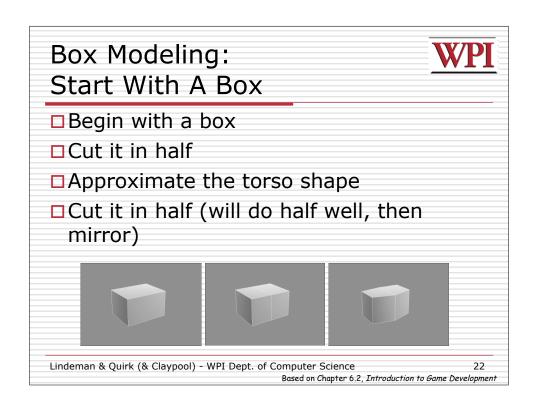
□ Adjust:

- The artistic part of modeling. Try to capture form, profile and character by moving vertices
 - "Vertex surgery," part of the technical manipulation

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

19 Based on Chapter 6.2, Introduction to Game Development




3D Art: Outline

- □ Preparing to Create
- Modeling Theory
 - (next) Example
- ■Texturing
- Lighting

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

20

Box Modeling : Extrude The Torso And Neck

- ■Extrude the box several times
 - 3 times for the top, 2x for the bottom
- □Adjust to simulate a rough torso (with bulge)
- ■Do the same for the neck

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

23

Based on Chapter 6.2, Introduction to Game Development

Box Modeling: Extrude The Head

- □ Extrude from the neck
 - First to eye level, then to top of head
- □Extrude the head
 - Adds volume to the head
- □ Edit into a roughed out head
 - Cuts above eye line for brow and under for nose

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

24

Based on Chapter 6.2, Introduction to Game Development

Box Modeling: Create Rough Arms

- □ Here, only one of two arms
- Extrude the upper side of the torso for the shoulder area
- □ Extrude several times for the arm
- Manipulate into rough arm shapes

■ Bend at elbow

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 25

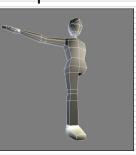
Based on Chapter 6.2, Introduction to Game Development

Box Modeling: Create Rough Hands

- Extrude a few times for basic hand volume
 - 3, in this example
- □Cut and extrude the thumb volume
- □ Note: refer to own hands for proportions

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 26

Based on Chapter 6.2, Introduction to Game Development


Box Modeling: Time For Legs

- □Again, create only one of the legs
- ■Extrude and edit
- Extrude feet forward from stump

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Based on Chapter 6.2, In

27

Based on Chapter 6.2, Introduction to Game Development

Box Modeling: Mirror

- □ Delete half of the model
- ■Mirror the other side
- □ Attach and weld the seam

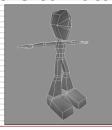
Next up, refining the model!

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 28

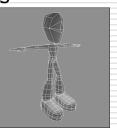
Based on Chapter 6.2, Introduction to Game Development

Box Modeling: Proportions Match

- ☐ Bring the turnaround sketches into the viewport on a textured plane
- Manipulate until the model matches up
 Important things: head right size, extremity
 - Important things: head right size, extremity lengths, eye level.


Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Based on Chapter 6.2, Introduction to Game Development


Box Modeling: Begin Adding Detail

- □ Square legs and shoes are especially prominent
 - Will look blocky in game engine
- □Add a few more segments to support more curvature for the legs

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

30

Based on Chapter 6.2, $Introduction\ to\ Game\ Development$

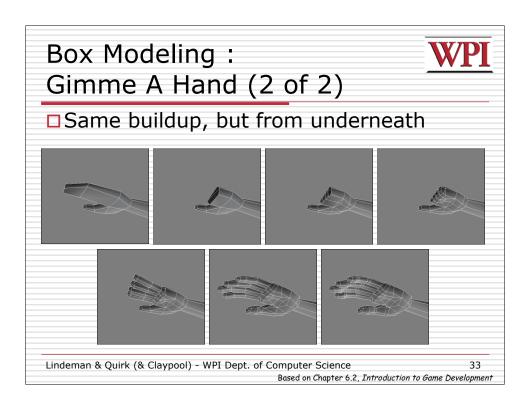
Box Modeling: Cuffs

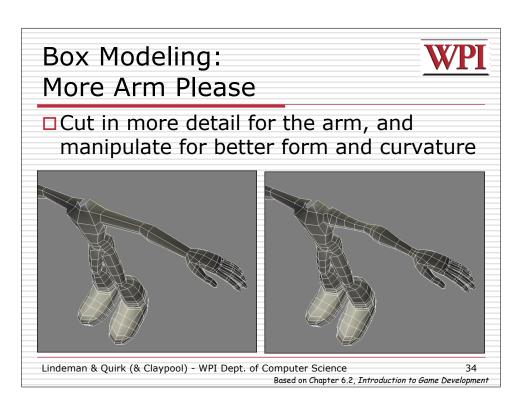
- □ Cut faces into feet to get curvature, adjust as necessary
 - Constantly compare to sketches
- □ A simple extrude to create the cuffs of the pants

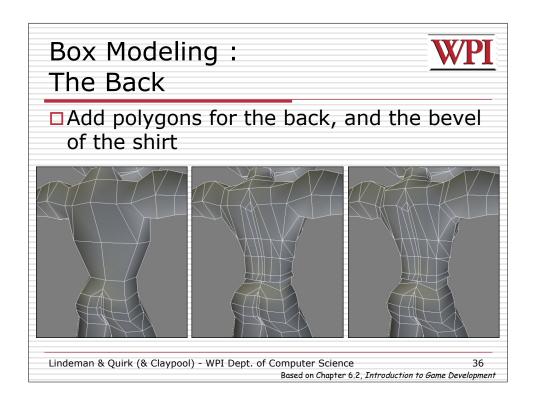
Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 6.2, Introduction to Game Development

Box Modeling: Gimme A Hand (1 of 2)

- Often the most difficult
 - Use own hand constantly for proportions □ Slightly curved, so natural, middle finger higher
- Cut where fingers begin
- □ Extrude outward for 4 fingers
- ☐ Fingers will need joints if animated







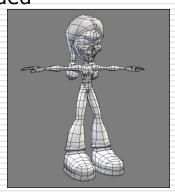
Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 6.2, Introduction to Game Development

Box Modeling: The Torso Cut in to support relevant detail Additional polygons at shoulder to support deformation Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 6.2, Introduction to Game Development

Box Modeling: The Face, Head And Hair

Phases

- Major structures: brow, eye, cheekbone, mouth nose
- Extrude volume for hair
- Adjust bottom for extruding ponytails
- Cut in polygons around eyes, mouth, nose
- Once done, add some asymmetry (part off center)



Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 6.2, Introduction to Game Development

Box Modeling: Done

□The completed model in wireframe and shaded

Images courtesy of WildTangent, modeled by David Johnson.

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Based on Chapter 6.2, Introduction to Game Development

Box Modeling: Summary

- Done for character, but can apply to other things
- □General idea:
 - Start with box, cylinder or other primitive
 - Extrude, Cut, Adjust...
 - Get topology, proportions right
 - Once happy, refine until details complete

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

39

Other Modeling Techniques: 3D Sculpting

- □ A low resolution model can be sculpted into a very detailed mesh
- ☐ This can be used in game via normal maps
 - (Calculate lighting on each pixel, gives illusion of more polygons of fidelity)

Images courtesy of Pixolgic

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Based on Chapter 6.2,

40

Based on Chapter 6.2, Introduction to Game Development

Other Modeling Techniques: Reverse Engineering

- □ Real world objects or sculptures can be scanned or digitized
- ☐ This may not save time because of complicated polygon cleanup, but will ensure high fidelity

Image courtesy of FARO Technologies, Inc.

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

41

Based on Chapter 6.2, Introduction to Game Development

Other Modeling Techniques: BSP

- □BSP stands for Binary Space Partition
- A coding term that is also method for organizing data
- □Like cutting away a mineshaft
 - Start inside solid room
 - Cut away chunks with primitives
- □ Satisfying since can make space quickly
- □BSP Editors come with many games like Quake, Unreal and Half-Life

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 42

Based on Chapter 6.2, Introduction to Game Development

Low Poly Modeling (1 of 3)

- ☐ Again, too many polygons results in lower frame rates
- ☐ To keep frame rates consistent, use level-ofdetail (LOD) meshes
 - Multiple versions of object, progressively lower levels
- When far away, use low level
 - Assume more objects in Field of View
- □ When close, use higher level
 - Assume fewer objects in Field of View

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

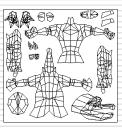
Based on Chapter 6.2, Introduction to Game Development

Low Poly Modeling (2 of 3)

- ☐ For entire level (ie- map with environment), entire polygon count matters
 - Impacts amount of memory needed
- □ But only visible polygons rendered
 Rest are "culled" and not computed


Images courtesy of WildTangent

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 6.2, Introduction to Game Development



Low Poly Modeling (3 of 3)

□ With low polygon modeling, much of the detail is painted into the texture (next topic!)

Images courtesy of WildTangent, model and texture by David Johnson.

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 45

Based on Chapter 6.2, Introduction to Game Development

WPI

3D Art - Sub-Outline

- □ Preparing to Create
- Modeling Theory
 - Example
- □Texturing
- Lighting

(next)

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

46

Texturing

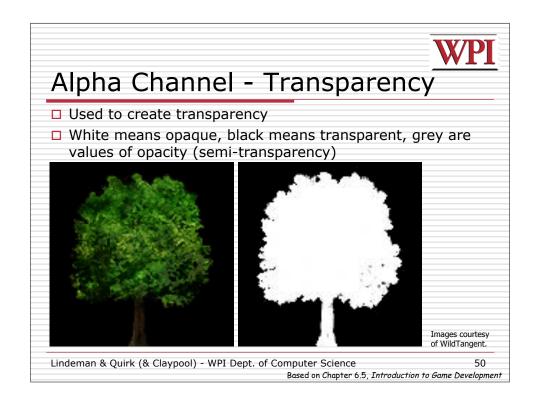
- Motivation
 - Games rely heavily for realism
 - Important to compensate for low geometry
 - Challenging, yet rewarding
- □ Distinction between texture and shader
 - Shader define surface property of object how shiny, bumpy, how light effects
 - Texture bitmap plugged into shader that defines image we want to appear on object

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 47

Based on Chapter 6.4, Introduction to Game Development

Detail in Texture

- □Add depth, lines, etc. without polygons
- □Box is 12 polygons, bricks would take many more

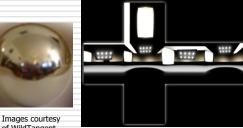


(Taken from http://www.mostert.org/3d/3dpdzscenem.html)

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 48

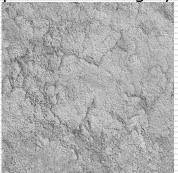
Based on Chapter 6.4, Introduction to Game Development

A Brief Word on Alpha Channels The embedded extra 8 bits of 32-bit image 24 bits gives true color, 2²⁴ ~ 16 million colors) Use for: Transparency Reflection Bump maps Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 6.5, Introduction to Game Development



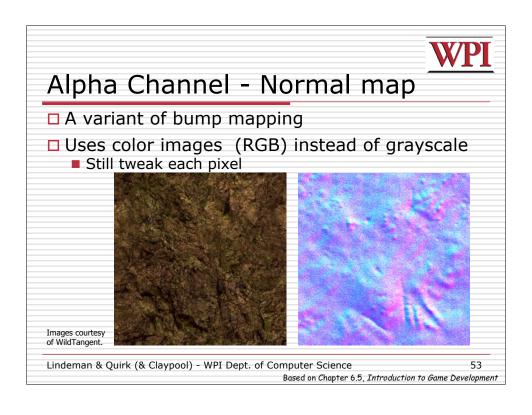
Alpha Channel - Reflection

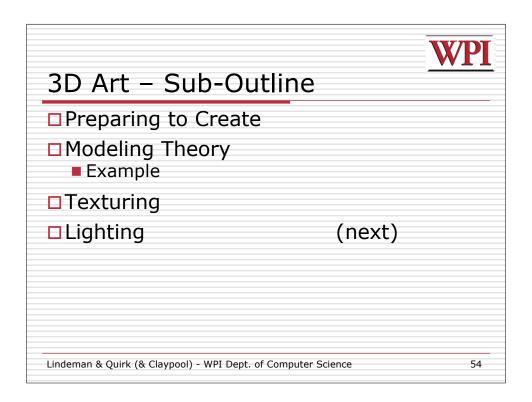
- □ Define what areas reflect light most human face shiny where oil, water ripples
- □ Three common types of reflection
 - Camera projected always the same, but can be unrealistic
 - Cubemap 6 sides, but predefined
 - Dynamic sides computed on the fly



Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Based on Chapter 6.5, Introduction to Game Development


Alpha Channel - Bump Map


- Use to create illusion of varying heights
- ☐ Light is protrusion, dark is recession
- □ Tweaks each pixel based on grayscale value

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

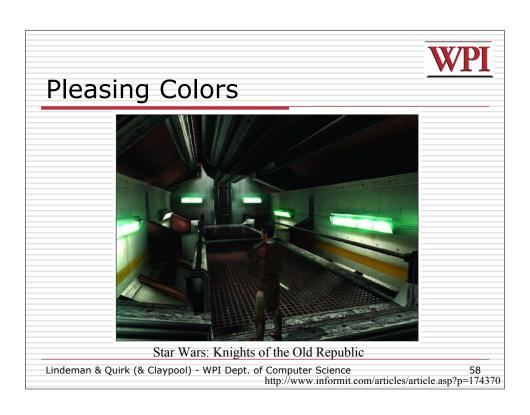
Based on Chapter 6.5, Introduction to Game Development

Lighting

- ☐ Can conjure feelings, emotions, even change what you are seeing
 - Reveal (or hide) depth
 - (Many books on traditional lighting)
 - AR/ID 3150. LIGHT, VISION AND UNDERSTANDING
- □ Remember, when see things is really reflection of light
- Sub-outline
 - Color
 - Mood
 - Setup
 - 3-D lights

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 55

Based on Chapter 6.6, Introduction to Game Development


Color

- □ Powerful in setting mood
- □ Typical ok,
 - Green is ok, Red is danger
 - But feel free to move beyond cliché
- Culture specific
 - Sure, Red danger, but in China Red happy
 - White purity, but in China White death
- Powerful associations
 - Ex: The Matrix
 - ☐ Green is in Matrix
 - □ Blue is in real-world
- □ Balance
 - Too many and chaotic, over-stimulation
 - Too little and drab and boring
 - (Color theory classes can help)

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Based on Chapter 6.6, Introduction to Game Development

Mood

- □ Intensity, direction, angle, number of lights, and shadows all affect mood
- □ Even humidity, dust, air quality

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 59

Based on Chapter 6.6, Introduction to Game Development

Mood by Lighting Example (1 of 3)

A calming outdoor scene using simple, yet effective, lighting

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 60 http://www.informit.com/articles/article.asp?p=174370

Mood by Lighting Example (2 of 3)

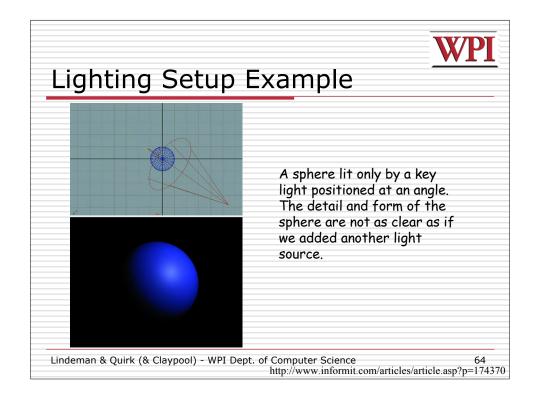
Long shadows not only add to the atmosphere, but also help break up repetition

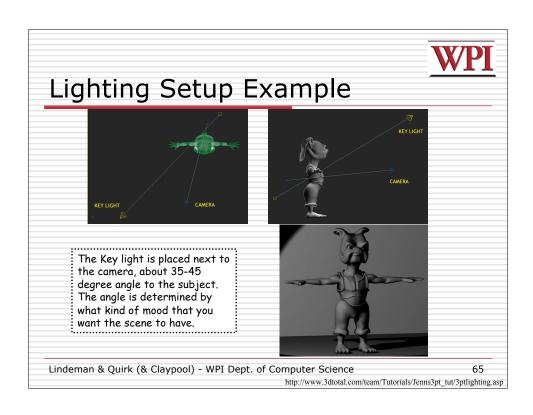
Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 61 http://www.informit.com/articles/article.asp?p=174370

Mood by Lighting Example (3 of 3)

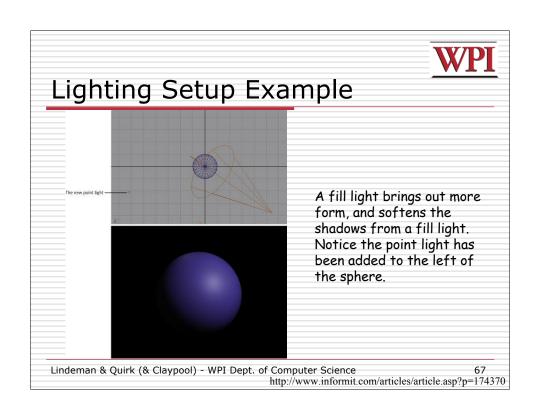
Light beams and rays give clues as to the humidity, dust, and air quality in a scene

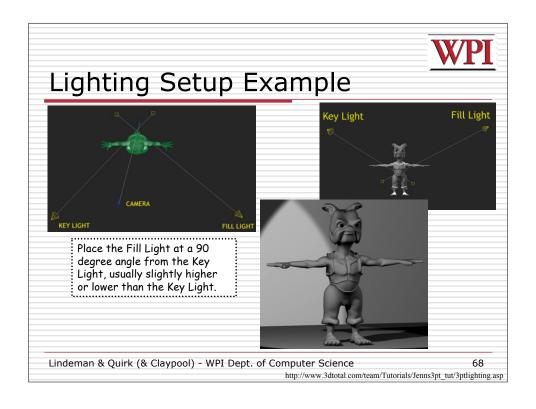
Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 62 http://www.informit.com/articles/article.asp?p=174370



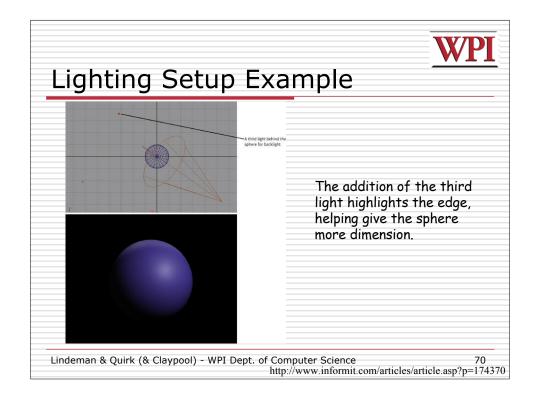

Lighting Setup (1 of 3)

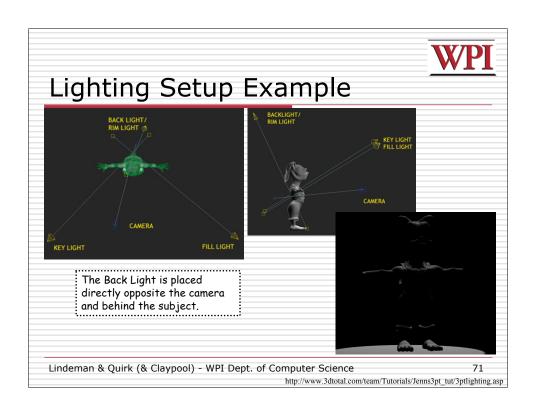
- □Traditional lighting
 - Key light, Fill light, Back light
- □ Key light main light source. Most intense and majority. Put at angle to define 3-D forms.

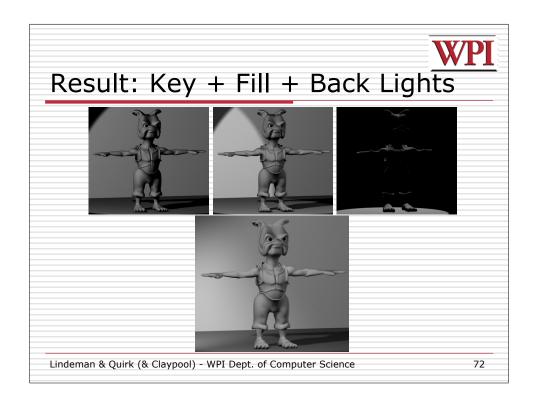

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 63


Based on Chapter 6.6, Introduction to Game Development

Lighting Setup (2 of 3) Fill light – Brings out some details out of shadow. Works well at angle. Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 6.6, Introduction to Game Development




Lighting Setup (3 of 3)

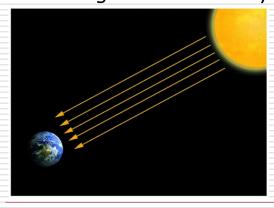

- □ Backlight Placed behind and slightly above or below object to help define shape. Highlights edges, pulls away from background.
 - (Also called the Rim Light or Hair Light)

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 69

Based on Chapter 6.6, Introduction to Game Development


Working with 3D lights (1 of 3)

- 3-D lighting different than traditional lighting
 - Start with traditional and modify until you get desired affect (broad strokes)
- □Tools give different kinds of lights
 - (next)
- □A few effective practices
 - (after)


Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

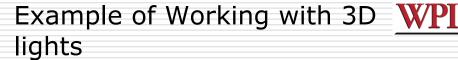
73

Based on Chapter 6.6, Introduction to Game Development

□ Directional Lights – used for sunlight or moonlight. Often as key light. Predictable.

By the time the sun's rays reach the earth, they are nearly parallel to one another.

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 74


Based on Chapter 6.6, Introduction to Game Development

Working with 3D lights (3 of 3)

- □ Ambient Lights spread everywhere, equally. Uniform diffuse lights.
 - Can skip by creative placement of the Fill Light, but gives more precise control over illumination
- □ Spot Lights focus beam on single location. Great control.
- □ Point Lights single point in all directions. Light bulbs, candles, etc.
- □ Background Light soften the areas of the background that Key Light doesn't illuminate

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 6.6, Introduction to Game Development

A room lit without radiosity. Bottom The same room with a radiosity solution.

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science Based on Chapter 6.6, Introduction to Game Development

Pools of light

- Don't always
 try to light evenly.
 Gives sense of
- Gives sense of mystery

Pools of light in Indiana Jones: The Emperor's Tomb

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

77

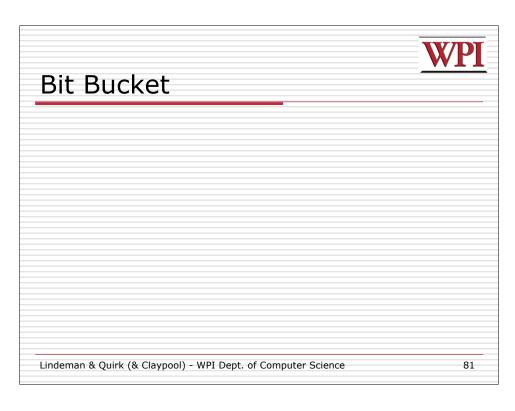
Based on Chapter 6.6, Introduction to Game Development

Based on Chapter 6.6, Introduction to Game Development

- Be Creative
 - Try not to stick to the standard solutions
 - Tell a story with your lights
 - Talk to level designer about scenes, even
 - Ex: Maybe your level harder than last, convey that tension
- Experiment
 - Start simple, add detail.
 - Experiment at early stages.
 - Try crazy combinations of color, reverse the intensities, or reposition lights in unorthodox places.

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 79

Based on Chapter 6.6, Introduction to Game Development



Lighting Summary

- □Study real-world light carefully to understand 3D light
 - 3D is at best only an approximation
- □Study different conditions rain, sunny, indoor, outdoor....
- ☐ Study lights from photos
- □The key to developing skills as lighting artist → observe and re-create what you see

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 80

Based on Chapter 6.6, Introduction to Game Development

Notes The rest of the topics are to be covered on students own time Or, possibly in class, as time allows Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 82

Make Interesting Textures

- □ Consider story behind object
- Consider door (contoured, so could do geometry, but cheaper to put picture up)
- Could just take one on Internet and put up
- □ But can make more believable
 - How old? Who uses it? Repainted? How long ago?
- Add grunge around knob, show nicks at bottom, flecks of color where repainted ...

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

83

Based on Chapter 3, Creating the Art of the Game, by Matthew Omernick

Textures are Their Own Artwork

- Rarely ready to go ... spend time in Photoshop massaging, customizing
- □ Think of each texture as custom artwork
- Before and after page 49
 - Wood → with coffee mug stain, nicks and scratches
 - Window → depth in reflections, uneven opacity
 - Concrete → cracks, discoloration
- Need to be aware if tiled and reused
 - Interesting textures harder to re-use since noticeable

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

84

Based on Chapter 3, Creating the Art of the Game, by Matthew Omernick

Resolution

- ■Analogy:
 - Smiley face with 15 rocks
 - □Hard to make out
 - Smiley face with 30 rocks
 □Looks Better
 - Smiley face with sand

 □Looks great
- □So, always use high resolution for textures? Not necessarily. Takes more video memory.

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 85

Based on Chapter 3, Creating the Art of the Game, by Matthew Omernick

Where To Use Pixels?

- □ Think about
 - Physical size actual size of object relative to character
 - Distance how far away and how close can character get to it
- □ Consider: room with box, window, clock □ Each has a different resolution texture applied to it
 - Box not much (on floor and can't crawl) 128x128
 - Wall more since big (but still uninteresting) 512x512
 - Clock small and high, but numbers so 64x64
 - Window has picture of lighthouse but far so 32x32

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 86

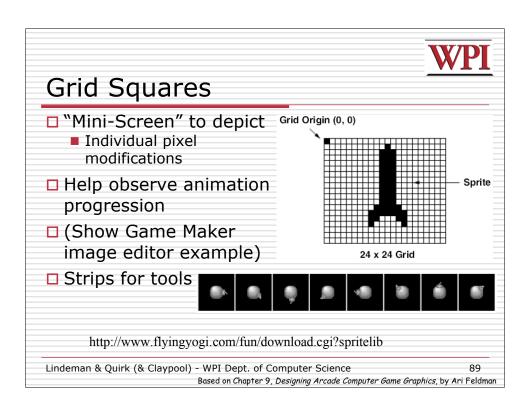
Based on Chapter 3, Creating the Art of the Game, by Matthew Omernick

Color Depth

- ☐ How many bits to use to color each pixel
 - Ex: 16 colors (4-bit) lot less memory than 65,536 colors (16-bit)
 - Recommendation, try low and see if holds
- □ Sometimes low-bit gives "washed out" look that can be desired
- ☐ In fact, T.V. and real-world have lower color depth than most computer monitors
 - Try for yourself
 - Vibrant on computer may not be realistic
 - Worse, if port to T.V. reds bleed together

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science 87

Based on Chapter 3, Creating the Art of the Game, by Matthew Omernick


Sprites

- □ Graphic objects that can move separately from background
- Often animated
- □Topics:
 - Grid Squares
 - Primitives

Lindeman & Quirk (& Claypool) - WPI Dept. of Computer Science

88

Based on Chapter 9, Designing Arcade Computer Game Graphics, by Ari Feldman

