CS 543:
Computer Graphics

Fractals \& Iterative Function Systems

Robert W. Lindeman

Associate Professor
Interactive Media \& Game Development
Department of Computer Science Worcester Polytechnic Institute
gogo@wpi.edu
(with lots of help from Prof. Emmanuel Agu :-)

What are Fractals?

\square Mathematical expressions
\square Approach infinity in organized way
\square Utilize recursion on computers
\square Popularized by Benoit Mandelbrot (Yale University)
\square Dimensionality

- Line is one-dimensional
- Plane is two-dimensional
\square Fractals fall somewhere in between
\square Defined in terms of self-similarity

Self Similarity

\square Level of detail remains the same as we zoom in
-Example
■ Surface roughness, or silhouette, of mountains is the same at many zoom levels

- Difficult to determine scale
\square Types or fractals
- Exactly self-similar
$■$ Statistically self-similar

Examples of Fractals

\square Modeling mountains (terrain)
\square Clouds
\square Fire

- Branches of a tree
\square Grass
\square Coastlines
\square Surface of a sponge
\square Cracks in the pavement
\square Designing antennae (www.fractenna.com)

Examples of Fractals: Mountains

WPI

Examples of Fractals: Clouds

Images: www.kenmusgrave.com
R.W. Lindeman - WPI Dept. of Computer Science Interactive Media \& Game

WPI

Examples of Fractals: Fire

Images: www.kenmusgrave.com
R.W. Lindeman - WPI Dept. of Computer Science Interactive Media \& Game

WPI

Examples of Fractals: Comets?

Images: www.kenmusgrave.com
R.W. Lindeman - WPI Dept. of Computer Science Interactive Media \& Game

WPI

Koch Curves

-Discovered in 1904 by Helge von Koch
\square Start with straight line of length 1
\square Recursively

- Divide line into three equal parts
- Replace middle section with triangular bump with sides of length $1 / 3$
■ New length $=4 / 3$

Koch Snowflake

\square Can form Koch snowflake by joining three Koch curves
\square Perimeter of snowflake grows as:

$$
P_{i}=3(4 / 3)^{i}
$$

where P_{i} is the perimeter of the i th snowflake iteration
\square However, area grows slowly as $\mathrm{S}_{\infty}=8 / 5$!
\square Self similar

- Zoom in on any portion
- If n is large enough, shape is the same
- On computer, smallest line segent > pixel spawieifgg

Koch Snowflake

R.W. Lindeman - WPI Dept. of Computer Science Interactive Media \& Game

Psedocode to draw Koch Curve

if (n equals 0) $\{$
draw straight line
\} else \{
Draw K_{n-1}
Turn left 60°
Draw K_{n-1}
Turn right 120°
Draw K_{n-1}
Turn left 60°
Draw K_{n-1}
\}
R.W. Lindeman - WPI Dept. of Computer Science Interactive Media \& Game

Gingerbread Man

- Each new point \mathbf{q} is formed from previous point \mathbf{p} using the equation

$$
\begin{aligned}
& q \cdot x=M(1+2 L)-p \cdot y+|p \cdot x-L M| \\
& q \cdot y=p \cdot x .
\end{aligned}
$$

- For 640×480 display area,

$$
\text { use } M=40 \quad L=3
$$

- A good starting point is

$$
(115,121)
$$

Iterated Function Systems (IFS)

\square Subdivide
\square Recursively call a function
\square Does result converge to an image? What image?
\square IFS do converge to an image
\square Examples

- The Fern

■ The Mandelbrot set

Example: Ferns

WPI

Fractals and Self-Similarity

\square Exact Self-similarity
■ Each small portion of the fractal is a reduced-scale replica of the whole (except for a possible rotation and shift).
\square Statistical Self-similarity

- The irregularities in the curve are statistically the same, no matter how many times the picture is enlarged.

WPI

The Fern

\square Any (sub) branch looks similar to any other (sub) branch
\square Including ancestors and descendents

WPI

Mandelbrot Set

WPI

Fractal Coastline

WPI

Examples of Fractals: Trees

Fractals appear "the same" at every scale.

Fractal Dimension - Eg. 2

The Sierpinski Triangle

$$
\begin{gathered}
D=\frac{\log N}{\log \left(\frac{1}{s}\right)} \\
N=3, s=1 / 2 \\
\therefore D=1.584
\end{gathered}
$$

WPI

Space-Filling Curves

\quad There are fractal curves which completely fill up higher dimensional spaces such as squares or cubes.
\square The space-filling curves are also known as Peano curves (Giuseppe Peano: 1858-1932).
\square Space-filling curves in 2D have a fractal dimension 2.

You're not expected to be able to prove this.

Hilbert Curve

\square Discovered by German Scientist, David Hilbert in late 1900s
\square Space filling curve
\square Drawn by connecting centers of 4 sub-squares, make up larger square.
\square Iteration 0: 3 segments connect 4 centers in upside-down U

Iteration 0

Hilbert Curve: Iteration 1

\square Each of 4 squares divided into 4 more squares
$\square U$ shape shrunk to half its original size, copied into 4 sectors
\square In top left, simply copied, top right: it's flipped vertically
\square In the bottom left, rotated 90 degrees clockwise,
\square Bottom right, rotated 90 degrees counter-clockwise.
$\square 4$ pieces connected with 3 segments, each of which is same size as the shrunken pieces of the U shape (in red)

Hilbert Curve: Iteration 2

\square Each of the 16 squares from iteration 1 divided into 4 squares
\square Shape from iteration 1 shrunk and copied.
$\square 3$ connecting segments (shown in red) are added to complete the curve.
\square Implementation? Recursion is your friend!!

Space-Filling Curves

Space-Filling Curves in 3D

WPI

Generating Fractals

\square Iterative/recursive subdivision techniques
\square Grammar based systems (L-Systems)
■ Suitable for turtle graphics/vector devices
\square Iterated Functions Systems (IFS)
■ Suitable for raster devices

L-Systems

\square A grammar-based model for generating simple fractal curves

- Devised by biologist Aristid Lindenmayer for modeling cell growth
- Particularly suited for rendering line drawings of fractal curves using turtle graphics
\square Consists of a start string (axiom) and a set of replacement rules
- At each iteration all replacement rules are applied to the string in parallel
\square Common symbols:
- F Move forward one unit in the current direction.
- + Turn right through an angle A.
- - Turn left through an angle A.
R.W. Lindeman - WPI Dept. of Computer Science

The Koch Curve

Axiom: F (the zeroth order Koch curve)
Angle: 60°

First order:

$$
\mathrm{F}-\mathrm{F}++\mathrm{F}-\mathrm{F}
$$

Second order:

$$
\mathrm{F}-\mathrm{F}++\mathrm{F}-\mathrm{F}-\mathrm{F}-\mathrm{F}++\mathrm{F}-\mathrm{F}++\mathrm{F}-\mathrm{F}++\mathrm{F}-\mathrm{F}-\mathrm{F}-\mathrm{F}++\mathrm{F}-\mathrm{F}
$$

WPI

The Dragon Curve

Axiom: FX
Rules:
$F \rightarrow \varnothing$
$X \rightarrow+F X--F Y+$
$\mathrm{Y} \rightarrow-\mathrm{FX}++\mathrm{FY}-$

_ At each step, replace a straight segment with a right angled elbow.

Alternate right and left elbows.

FX and FY are "embryonic" right and left elbows respectively.

L-System code

import turtle
turtle.speed(0) \# Max speed (still horribly slow)
def draw (start, rules, angle, step, maxDepth):
for char in start:
if maxDepth $==0$:
if char == 'F': turtle.forward(step)
elif char $==$ '-': turtle.left(angle)
elif char $==$ '+': turtle.right(angle)
else:
if char in rules: \# rules is a dictionary char $=$ rules[char]
draw (char, rules, angle, step, maxDepth-1)
\# Dragon example:
draw("FX",\{'F':"",'X':"+FX--FY+",'Y':"-FX++FY-"\}, 45, 5, 10)

R.W. Lindeman - WPI Dept. of Computer Science	
Interactive Media \& Game Development	32

WPI

Generalized Grammars

\square The grammar rules in L-systems can be further generalized to provide the capability of drawing branchlike figures, rather than just continuous curves.
\square The symbol [is used to store the current state of the turtle (position and direction) in a stack for later use.
\square The symbol] is used to perform a pop operation on the stack to restore the turtle's state to a previously stored value.

Generalized Grammars

Fractal bush:
$S \rightarrow F$
$F \rightarrow F F-[-F+F+F]+[+F-F-F]$
($A=22$ degs.)

Fourth order bush

Random Fractals

\square Natural objects do not contain identical scaled down copies within themselves and so are not exact fractals.
\square Practically every example observed involves what appears to be some element of randomness, perhaps due to the interactions of very many small parts of the process.
\square Almost all algorithms for generating fractal landscapes effectively add random irregularities to the surface at smaller and smaller scales.

Random Fractals

\square Random fractals are
■ randomly generated curves that exhibit self-similarity, or

- deterministic fractals modified using random variables
\square Random fractals are used to model many natural shapes such as trees, clouds, and mountains.

IFS Example: Generating Fractal Terrain (2D)

1. Choose a randomnumber range
2. Start with a line
3. Find the midpoint

4. Displace it in y by a random amount
5. Reduce the range of your random numbers - Controls roughness

6. Recurse on both new segments

Random Midpoint Displacement Algorithm (2D)

- Subdivide a line segment into two parts, by displacing the midpoint by a random amount "g". i.e., y coordinate of C is

$$
y_{C}=\left(y_{A}+y_{B}\right) / 2+g
$$

- Generate g using a Gaussian random variable with zero mean (allowing negative values) and standard deviation s.
\square Recurse on each new part
- At each level of recursion, the standard deviation is scaled by a factor $(1 / 2)^{\mathrm{H}}$
$\square \quad H$ is a constant between 0 and 1
$\square H=1$ in the example on the right

Midpoint Displacement AlgorithmWPI (3D)

Square-Step:

Subdivide a ground square into, four parts, by displacing the midpoint by a Gaussian random variable g with mean 0 , std dev s.
i.e., Compute y-coordinate of E as
$y_{E}=\left(y_{A}+y_{B}+y_{C}+y_{D}\right) / 4+g$
Do that for all squares in the grid (only 1 square for the first iteration).

Then ...

R.W. Lindeman - WPI Dept. of Computer Science

WPI

Diamond step

\square To get back to a regular grid, we now need new vertices at all the edge mid-points too.
\square For this we use a diamond step:

- Vertices before square step

New vertices from square step

- Vertex from diamond step (on an old edge midpoint). Computed as in square step but using the 4 diamond vertices.

Do this for all edges (i.e., all possible diamonds).

Diamond step (cont' d)

WPI

Diamond-Square Algorithm

The above two steps are repeated for the new mesh, after scaling the standard deviation of g by $(1 / 2)^{\mathrm{H}}$. And so on ...

$$
\mathrm{H}=0.8
$$

R.W. Lindeman - WPI Dept. of Computer Science

WPI

Diamond Step Process

$1^{\text {st }}$ pass

$2^{\text {nd }}$ pass

$5^{\text {th }}$ pass

Height Maps

\square The 2D height map obtained using the diamond-square algorithm can be used to generate fractal clouds.
\square Use the y value to generate opacity.

Useful Links

\square Terragen - terrain generator
■ http://www.planetside.co.uk/terragen/
\square Generating Random Fractal Terrain

- http://www.gameprogrammer.com/fractal.html
\square Lighthouse 3D OpenGL Terrain Tutorial
- http://www.lighthouse3d.com/opengl/terrain/
\square Book about Procedural Content Generation
■ Noor Shaker, Julian Togelius, Mark J. Nelson, Procedural Content Generation in Games: A Textbook and an Overview of Current Research (Springer), 2014.
\square Book about Procedural Generation
David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steve Worley. Texturing and Modeling: A Procedural Approach (The Morgan Kaufmann Series in Computer Graphics)

[^0]
References

\square Angel and Shreiner, Interactive Computer Graphics, $6^{\text {th }}$ edition, Chapter 9
\square Hill and Kelley, Computer Graphics using OpenGL, $3^{\text {rd }}$ edition, Appendix 4

[^0]: R.W. Lindeman - WPI Dept. of Computer Science

