

CS 543: Computer Graphics

Fractals & Iterative Function Systems

Robert W. Lindeman

Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)

What are Fractals?

- Mathematical expressions
- Approach infinity in organized way
- Utilize recursion on computers
- Popularized by Benoit Mandelbrot (Yale University)
- Dimensionality
 - Line is one-dimensional
 - Plane is two-dimensional
 - Fractals fall somewhere in between

Defined in terms of self-similarity

Self Similarity

- □Level of detail remains the same as we zoom in
- Example
 - Surface roughness, or silhouette, of mountains is the same at many zoom levels
 - Difficult to determine scale
- □Types or fractals
 - Exactly self-similar
 - Statistically self-similar

Examples of Fractals

- Modeling mountains (terrain)
- Clouds
- Fire
- Branches of a tree
- 🗆 Grass
- Coastlines
- □ Surface of a sponge
- Cracks in the pavement
- Designing antennae (www.fractenna.com)

WPI Examples of Fractals: Mountains

WPI Examples of Fractals: Clouds

Images: www.kenmusgrave.com

Examples of Fractals: Fire

Images: www.kenmusgrave.com

WPI Examples of Fractals: Comets?

Images: www.kenmusgrave.com

Koch Curves

- Discovered in 1904 by Helge von Koch
- □ Start with straight line of length 1

Recursively

- Divide line into three equal parts
- Replace middle section with triangular bump with sides of length 1/3
- New length = 4/3

Koch Snowflake

- Can form Koch snowflake by joining three Koch curves
- Perimeter of snowflake grows as:

$$P_i = 3\left(\frac{4}{3}\right)^i$$

where P_i is the perimeter of the *i*th snowflake iteration

- \Box However, area grows slowly as $S_{\infty} = 8/5!$
- Self similar
 - Zoom in on any portion
 - If n is large enough, shape is the same
 - On computer, smallest line segent > pixel spacing

Koch Snowflake

WPI Psedocode to draw Koch Curve

```
if (n equals 0) {
```

draw straight line

```
} else {
```

```
Draw K_{n-1}
```

```
Turn left 60°
```

```
Draw K_{n-1}
```

Turn right 120°

```
Draw K_{n-1}
```

```
Turn left 60^{\circ}
```

Draw K_{n-1}

}

Gingerbread Man

 Each new point **q** is formed from previous point **p** using the equation

q.x = M(1 + 2L) - p.y + |p.x - LM|;q.y = p.x.

• For 640 x 480 display area, use M = 40 L = 3

WPI Iterated Function Systems (IFS)

- □ Subdivide
- □ Recursively call a function
- □ Does result converge to an image? What image?
- □ IFS do converge to an image
- Examples
 - The Fern
 - The Mandelbrot set

Example: Ferns

Fractals and Self-Similarity

Exact Self-similarity

Each small portion of the fractal is a reduced-scale replica of the whole (except for a possible rotation and shift).

Statistical Self-similarity

The irregularities in the curve are statistically the same, no matter how many times the picture is enlarged.

The Fern

Any (sub) branch looks similar to any other (sub) branch

Including ancestors and descendents

Mandelbrot Set

Fractal Coastline

Examples of Fractals: Trees

Fractals appear "the same" at every scale.

Fractal Dimension – Eg. 2

The Sierpinski Triangle

$$D = \frac{\log N}{\log\left(\frac{1}{s}\right)}$$

$$N=3, s=\frac{1}{2}$$

:.D=1.584

Space-Filling Curves

There are fractal curves which completely fill up higher dimensional spaces such as squares or cubes.

□The space-filling curves are also known as Peano curves (Giuseppe Peano: 1858-1932).

□Space-filling curves in 2D have a fractal dimension 2.

You're not expected to be able to prove this.

Hilbert Curve

- Discovered by German Scientist, David Hilbert in late 1900s
- Space filling curve
- Drawn by connecting centers of 4 sub-squares, make up larger square.
- Iteration 0: 3 segments connect 4 centers in upside-down U

Hilbert Curve: Iteration 1

- □ Each of 4 squares divided into 4 more squares
- □ U shape shrunk to half its original size, copied into 4 sectors
- □ In top left, simply copied, top right: it's flipped vertically
- □ In the bottom left, rotated 90 degrees clockwise,
- □ Bottom right, rotated 90 degrees counter-clockwise.
- □ 4 pieces connected with 3 segments, each of which is same size as the shrunken pieces of the U shape (in red)_____

Hilbert Curve: Iteration 2

- Each of the 16 squares from iteration 1 divided into 4 squares
- □ Shape from iteration 1 shrunk and copied.
- 3 connecting segments (shown in red) are added to complete the curve.
- Implementation? Recursion is your friend!!

Space-Filling Curves

Space-Filling Curves in 3D

Generating Fractals

□ Iterative/recursive subdivision techniques

Grammar based systems (L-Systems)
 Suitable for turtle graphics/vector devices

Iterated Functions Systems (IFS)
 Suitable for raster devices

L-Systems ("Lindenmayer Systems")

- A grammar-based model for generating simple fractal curves
 - Devised by biologist Aristid Lindenmayer for modeling cell growth
 - Particularly suited for rendering line drawings of fractal curves using turtle graphics
- Consists of a start string (axiom) and a set of replacement rules
 - At each iteration all replacement rules are applied to the string in parallel
- Common symbols:
 - F Move forward one unit in the current direction.
 - + Turn right through an angle A.
 - Turn left through an angle A.

0

1

The Koch Curve

Order Axiom: F (the zeroth order Koch curve) Rule: $F \rightarrow F-F++F-F$ Angle: 60° First order: F-F++F-F

2

60

Second order:

F-F++F-F-F-F++F-F++F-F++F-F-F-F-F++F-F

The Dragon Curve

At each step, replace a straight segment with a right angled elbow.

Alternate right and left elbows.

FX and FY are "embryonic" right and left elbows respectively.

L-System code

```
import turtle
turtle.speed(0) # Max speed (still horribly slow)
def draw(start, rules, angle, step, maxDepth):
    for char in start:
        if maxDepth == 0:
            if char == 'F': turtle.forward(step)
            elif char == '-': turtle.left(angle)
            elif char == '+': turtle.right(angle)
        else:
            if char in rules: # rules is a dictionary
                char = rules[char]
            draw(char, rules, angle, step, maxDepth-1)
# Dragon example:
draw("FX", { 'F': "", 'X': "+FX--FY+", 'Y': "-FX++FY-" }, 45, 5, 10)
```


Generalized Grammars

- The grammar rules in L-systems can be further generalized to provide the capability of drawing branchlike figures, rather than just continuous curves.
- The symbol [is used to store the current state of the turtle (position and direction) in a stack for later use.
- The symbol] is used to perform a pop operation on the stack to restore the turtle's state to a previously stored value.

Generalized Grammars

Random Fractals

- Natural objects do not contain identical scaled down copies within themselves and so are not exact fractals.
- Practically every example observed involves what appears to be some element of randomness, perhaps due to the interactions of very many small parts of the process.
- Almost all algorithms for generating fractal landscapes effectively add random irregularities to the surface at smaller and smaller scales.

WPI

Random Fractals

- Random fractals are
 - randomly generated curves that exhibit self-similarity, or
 - deterministic fractals modified using random variables
- Random fractals are used to model many natural shapes such as trees, clouds, and mountains.

IFS Example: WPI Generating Fractal Terrain (2D)

- 1. Choose a randomnumber range
- 2. Start with a line
- 3. Find the midpoint
- 4. Displace it in y by a random amount
- 5. Reduce the range of your random numbers
 - Controls roughness
- 6. Recurse on both new segments

Random Midpoint Displacement Algorithm (2D)

Subdivide a line segment into two parts, by displacing the midpoint by a random amount "g". *i.e.*, ycoordinate of C is

 $y_{C} = (y_{A} + y_{B})/2 + g$

Generate g using a Gaussian random variable with zero mean (allowing negative values) and standard deviation s.

□ Recurse on each new part

- At each level of recursion, the standard deviation is scaled by a factor (1/2)^H
 - □ H is a constant between 0 and 1
 - $\Box H = 1 \text{ in the example on the right}$

Midpoint Displacement Algorithm WPI (3D)

Square-Step:

Subdivide a ground square into four parts, by displacing the midpoint by a Gaussian random variable *g* with mean 0, std dev *s*.

i.e., Compute y-coordinate of E as

 $y_{E} = (y_{A} + y_{B} + y_{C} + y_{D})/4 + g$

Do that for all squares in the grid (only 1 square for the first iteration). Then ...

Diamond step

 To get back to a regular grid, we now need new vertices at all the edge mid-points too.
 For this we use a *diamond step*:

- Vertices before square step
- New vertices from square step
- Vertex from diamond step(on an old edge midpoint).Computed as in square step but using the 4 diamond vertices.

Do this for all edges (i.e., all possible diamonds).

Diamond step (cont'd)

Diamond-Square Algorithm

The above two steps are repeated for the new mesh, after scaling the standard deviation of g by $(1/2)^{H}$. And so on ...

Diamond Step Process

1st pass

2nd pass

5th pass

Height Maps

- The 2D height map obtained using the diamond-square algorithm can be used to generate fractal clouds.
- □ Use the y value to generate opacity.

Useful Links

- □ Terragen terrain generator
 - <u>http://www.planetside.co.uk/terragen/</u>
- □ Generating Random Fractal Terrain
 - <u>http://www.gameprogrammer.com/fractal.html</u>
- □ Lighthouse 3D OpenGL Terrain Tutorial
 - <u>http://www.lighthouse3d.com/opengl/terrain/</u>
- Book about Procedural Content Generation
 - Noor Shaker, Julian Togelius, Mark J. Nelson, Procedural Content Generation in Games: A Textbook and an Overview of Current Research (Springer), 2014.
- □ Book about Procedural Generation

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steve Worley. *Texturing and Modeling: A Procedural Approach* (The Morgan Kaufmann Series in Computer Graphics)

References

Angel and Shreiner, Interactive Computer Graphics, 6th edition, Chapter 9

Hill and Kelley, Computer Graphics using OpenGL, 3rd edition, Appendix 4