

CS 543: Computer Graphics

Meshes

Robert W. Lindeman

Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)

Polygonal Meshes

- Modeling with basic shapes (cube, cylinder, sphere, etc.) is too primitive
- Difficult to approach realism
- Polygonal meshes
 - Collection of polygons, or faces, that form "skin" of object
 - Offer more flexibility
 - Model complex surfaces better
 - Examples
 - Human face
 - Animal structures
 - □ Arbitrary curves, *etc.*

Polygonal Meshes (cont.)

- □ Have become standard in CG
- □ WebGL
 - Good at drawing polygons
 - Mesh = sequence of polygons
- □Simple meshes are exact (*e.g.*, barn)
- Complex meshes are approximate (e.g., human face)
- Later
 - Use shading technique to smoothen the appearance

Non-Solid Objects

- □ Examples: box, face
- □ Visualize as infinitely thin *skin*
- Meshes to approximate complex objects
- Shading used later to smoothen
- □ Non-trivial: creating mesh for complex objects (CAD)

What is a Polygonal Mesh?

Polygonal mesh defined by

- List of polygons
- Normal of each polygon
- Normal vectors used in shading

Normal & light vectors determine shading

Vertex Normals

- Use vertex normal instead of face normal
- See advantages later
 - Facilitates clipping / culling
 - Shading of smoothly curved shapes
 - Flat surfaces
 - All vertices associated with same n
 - Smoothly curved surfaces
 - \Box V₁, V₂ with common edge share **n**

WPI

Defining a Polygonal Mesh

□Barn example

WPI

Defining a Polygonal Mesh

- □ Three lists:
 - Vertex list
 - □ Distinct vertices (vertex number, $V_{x'}$, $V_{y'}$, V_z)
 - Normal list

□ Normals to faces (normalized $n_{x'}$, $n_{y'}$, n_z)

Face list

Indices into vertex and normal lists. *i.e.*, vertices and normals associated with each face

- Face list convention
 - Traverse vertices counter-clockwise
 - Interior on left, exterior on right

3D Simplification Example

(courtesy of Michael Garland and Data courtesy of Iris Development.)