CS 543:
 Computer Graphics

Meshes

Robert W. Lindeman
Associate Professor
Interactive Media \& Game Development
Department of Computer Science Worcester Polytechnic Institute
gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)

Polygonal Meshes

\square Modeling with basic shapes (cube, cylinder, sphere, etc.) is too primitive
\square Difficult to approach realism
\square Polygonal meshes
■ Collection of polygons, or faces, that form "skin" of object
■ Offer more flexibility
■ Model complex surfaces better

- Examples
\square Human face
\square Animal structures
\square Arbitrary curves, etc.

Polygonal Meshes (cont.)

\square Have become standard in CG
\square WebGL
■ Good at drawing polygons
■ Mesh = sequence of polygons
\square Simple meshes are exact (e.g., barn)
\square Complex meshes are approximate (e.g., human face)
-Later
\square Use shading technique to smoothen the appearance

Non-Solid Objects

\square Examples: box, face
\square Visualize as infinitely thin skin
\square Meshes to approximate complex objects
\square Shading used later to smoothen
\square Non-trivial: creating mesh for complex objects (CAD)

What is a Polygonal Mesh?

\square Polygonal mesh defined by

- List of polygons

■ Normal of each polygon
■ Normal vectors used in shading
\square Normal \& light vectors determine shading

Vertex Normals

■ Use vertex normal instead of face normal
\square See advantages later

- Facilitates clipping / culling
- Shading of smoothly curved shapes
- Flat surfaces
\square All vertices associated with same n
- Smoothly curved surfaces
$\square V_{1}, V_{2}$ with common edge share \mathbf{n}

WPI

Defining a Polygonal Mesh

\square Barn example

R.W. Lindeman - WPI Dept. of Computer Science

Defining a Polygonal Mesh

\square Three lists:
\square Vertex list
\square Distinct vertices (vertex number, $V_{x}, V_{y,} V_{z}$)

- Normal list
\square Normals to faces (normalized n_{x}, n_{y}, n_{z})
■ Face list
\square Indices into vertex and normal lists. i.e., vertices and normals associated with each face
\square Face list convention
■ Traverse vertices counter-clockwise
■ Interior on left, exterior on right

WPI

3D Simplification Example

Original: 424,000 triangles

60,000 triangles (14\%)

1000 triangles (0.2\%)
(courtesy of Michael Garland and Data courtesy of Iris Development.)

