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3D Viewing and View Volume 
o Recall: 3D viewing set up 
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Projection Transformation 
o View volume can have different shapes 

n Parallel, perspective, isometric 

o Different types of projection 
n Parallel (orthographic), perspective, etc. 

o Important to control 
n Projection type: perspective or orthographic, 

etc. 
n Field of view and image aspect ratio 
n Near and far clipping planes 
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Perspective Projection 
o Similar to real world 
o Characterized by object foreshortening 

n Objects appear larger if they are closer to 
camera 

o Need to define 
n Center of projection (COP) 
n Projection (view) plane  

o Projection 
n Connecting the object to the center of 

projection 

projection plane 

camera 
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Why is it Called Projection? 

View plane"
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Orthographic (Parallel) Projection 
o No foreshortening effect 

n Distance from camera does not matter 

o The center of projection is at infinity 
o Projection calculation 

n Just choose equal z coordinates 
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Field of View 
o Determine how much of the world is 

taken into the picture 
o Larger field of view = smaller object-

projection size 

x 

y 

z 

y 

z θ	



field of view 
(view angle)  

center of projection 
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Near and Far Clipping Planes 
o Only objects between near and far planes 

are drawn 
o Near plane + far plane + field of view = 

View Frustum 

x 

y 

z 

Near plane  Far plane  
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View Frustum 
o 3D counterpart of 2D-world clip window 
o Objects outside the frustum are clipped 

x 

y 

z 

Near plane  Far plane  

View Frustum  
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Projection Transformation 
o In OpenGL 

n Set the matrix mode to GL_PROJECTION  
n For perspective projection, use 

gluPerspective( fovy, aspect, near, far ); 
or  

glFrustum( left, right, bottom, top, 
   near, far ); 

n For orthographic projection, use  
glOrtho(  left, right, bottom, top, 
   near, far ); 
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gluPerspective( fovy, aspect, near, far ) 
o Aspect ratio is used to calculate 

the window width 

x 

y 

z 

y 

z 

fovy 

eye 

near far Aspect = w / h  

w 

h 

θ	
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glFrustum(  left, right, bottom, top, 
   near, far ) 

o Can use this function in place of 
gluPerspective( ) 

x 

y 

z 

left 

right 
bottom 

top 

near far 
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glOrtho( left, right, bottom, top, 
  near, far ) 

o For orthographic projection 

x 

y 

z 

left 

right bottom 

top 

near 
far 
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Example: Projection 
Transformation 
 
void display(  )  { 
  glClear( GL_COLOR_BUFFER_BIT );  
  glMatrixMode( GL_PROJECTION );  
  glLoadIdentity( );  
  gluPerspective( FovY, Aspect, Near, Far );  
  glMatrixMode( GL_MODELVIEW );  
  glLoadIdentity( );  
  gluLookAt( 0, 0, 1, 0, 0, 0, 0, 1, 0 );  
  myDisplay( );    // your display routine 
} 
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Projection Transformation 
o Projection 

n Map the object  from 3D space to 2D screen 

x 

y 

z 

x 

y 

z 

Perspective: gluPerspective( )  Parallel: glOrtho( ) 
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Parallel Projection (The Math) 
o After transforming the object to eye space, 

parallel projection is relatively easy: we could 
just set all Z to the same value 
n  Xp = x  
n  Yp = y  
n  Zp = -d 

 
 
 

o We actually want to remember  Z  
     – why? 

x 

y 

z 
(x,y,z) 

(Xp, Yp) 
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Parallel Projection 
o OpenGL maps (projects) everything in 

the visible volume into a canonical view 
volume (CVV) 

(-1, -1, 1) 

(1, 1, -1) 

Canonical View Volume glOrtho( xmin, xmax, ymin,    
         ymax, near, far ) 

(xmin, ymin, near) 

(xmax, ymax, far) 

Projection: Need to build 4x4 matrix to do  
mapping from actual view volume to CVV 
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Parallel Projection: glOrtho 
o Parallel projection can be broken down 

into two parts 
n Translation, which centers view volume at 

origin 
n Scaling, which reduces cuboid of arbitrary 

dimensions to canonical cube 
o Dimension 2, centered at origin 
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Parallel Projection: glOrtho 
(cont.) 
o Translation sequence moves midpoint of view 

volume to coincide with origin 
n  e.g., midpoint of x = (xmax + xmin)/2 

o Thus, translation factors are 
 -(xmax+xmin)/2, -(ymax+ymin)/2, -(far+near)/2  

o So, translation matrix M1: 

€ 

1 0 0 −(xmax+ xmin) /2
0 1 0 −(ymax+ ymin) /2
0 0 1 −(zmax+ zmin) /2
0 0 0 1
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Parallel Projection: glOrtho 
(cont.) 
o Scaling factor is ratio of cube dimension 

to Ortho view volume dimension 
o Scaling factors  

 2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin) 
o So, scaling matrix M2: 

€ 

2
xmax− xmin

0 0 0

0 2
ymax− ymin

0 0

0 0 2
zmax− zmin

0

0 0 0 1
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Parallel Projection: glOrtho() 
(cont.) 
o Concatenating M1xM2, we get transform 

matrix used by glOrtho 

€ 

M2 ×M1=

2 /(xmax− xmin) 0 0 −(xmax+ xmin) /(xmax− xmin)
0 2 /(ymax− ymin) 0 −(ymax+ ymin) /(ymax− ymin)
0 0 2 /(zmax− zmin) −(zmax+ zmin) /(zmax− zmin)
0 0 0 1

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

Refer to: Hill, 7.6.2 
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1 0 0 −(xmax+ xmin) /2
0 1 0 −(ymax+ ymin) /2
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Perspective Projection: Classical 
o Side view 

x 

y 
z 

(0,0,0) 

d 

Projection plane  

Eye (center of projection ) 

(x,y,z) 

(x’,y’,z’) 

-z 

z 

y 
Based on similar triangles: 
 
         y       -z  
         y’       d 
 
                       d 
         y’ =  y *   
                      -z 
 

= 
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Perspective Projection: 
Classical (cont.) 
o So (x*, y*), the projection of point, (x, y, z) 

onto the near plane N, is given as 

n  Similar triangles 

o Numerical example 
Q: Where on the viewplane does P = (1, 0.5, 

-1.5) lie for a near plane at N = 1? 
 
(x*, y*) = (1 x 1/1.5,  1 x 0.5/1.5) = (0.666, 0.333) 

€ 

x*,y *( ) = N Px
−Pz

,N
Py
−Pz
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Pseudo Depth Checking 
o Classical perspective projection drops z coordinates 
o But we need z to find closest object (depth testing) 
o Keeping actual distance of P from eye is 

cumbersome and slow 

o  Introduce pseudodepth: all we need is a measure 
of which objects are further if two points project to 
the same (x, y) 

o Choose a, b so that pseudodepth varies from –1 to 
1 (canonical cube) 

€ 

distance = Px
2 + Py

2 + Pz
2( )

€ 

x*,y*,z *( ) = N Px
−Pz

,N
Py
−Pz

, aPz + b
−Pz
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Pseudo Depth Checking (cont.) 
o Solving: 

o For two conditions, z* = -1 when Pz = -N 
and z* = 1 when Pz = -F, we can set up 
two simultaneous equations 

o Solving for a and b, we get 

€ 

z* =
aPz + b
−Pz

€ 

a =
−(F + N)
F − N

€ 

b =
−2FN
F − N
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Homogenous Coordinates 
o  Would like to express projection as 4x4 transform 

matrix 
o  Previously, homogeneous coordinates for the point P = 

(Px, Py, Pz) was (Px, Py, Pz, 1) 
o  Introduce arbitrary scaling factor, w, so that P = (wPx, 

wPy, wPz, w) (Note: w is non-zero) 
o  For example, the point P = (2, 4, 6) can be expressed 

as 
n  (2, 4, 6, 1)  
n  or (4, 8, 12, 2) where w=2  
n  or (6, 12, 18, 3) where  w = 3 

o  So, to convert from homogeneous back to ordinary 
coordinates, divide all four terms by last component and 
discard 4th term 
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Perspective Projection 
o Same for x, so we have 
     x’ =  x * d / -z  
       y’ =  y * d / -z  
       z’ = -d 

o Put in a matrix form 

       
 
 
 
OpenGL assumes d = 1, i.e., the image plane is at z = -1 
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0 1 0 0
0 0 1 0
0 0 1
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Perspective Projection (cont.) 
o We are not done yet!  

o Need to modify the projection matrix to 
include a and b  

   x’    1  0    0     0     x  
   y’ =  0  1    0     0     y 
   z’    0  0    a     b     z 
   w     0  0  (1/-d)  0     1 
 
o  We have already solved a and b 

x 

y 
z 

Z = 1        z = -1   
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Perspective Projection (cont.) 
o Not done yet! OpenGL also normalizes 

the x and y ranges of the view frustum to 
[-1, 1] (translate and scale) 

o So, as in ortho, to arrive at final 
projection matrix 
n We translate by 

o –(xmax + xmin)/2 in x 
o -(ymax + ymin)/2 in y 

n And scale by 
o 2/(xmax – xmin) in x 
o 2/(ymax – ymin) in y 
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Perspective Projection (cont.) 
o Final projection matrix 
glFrustum( xmin, xmax, ymin, ymax, N, F ) 

n N = near plane, F = far plane 

€ 

2N
xmax− xmin

0 xmax+ xmin
xmax− xmin

0

0 2N
ymax− ymin

ymax+ ymin
ymax− ymin

0

0 0 −(F + N)
F − N
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F − N

0 0 −1 0

# 

$ 

% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 



R.W. Lindeman - WPI Dept. of Computer Science	

 31	



Perspective Projection (cont.) 
o After perspective projection, viewing 

frustum is also projected into a canonical 
view volume (like in parallel projection) 

(-1, -1, 1) 

(1, 1, -1) 

Canonical View Volume 

x 

y 

z 


