
CS 543:
Computer Graphics

Projection

Robert W. Lindeman
Associate Professor

Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute

gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)	

R.W. Lindeman - WPI Dept. of Computer Science	

 2	

3D Viewing and View Volume
o Recall: 3D viewing set up

R.W. Lindeman - WPI Dept. of Computer Science	

 3	

Projection Transformation
o View volume can have different shapes

n Parallel, perspective, isometric

o Different types of projection
n Parallel (orthographic), perspective, etc.

o Important to control
n Projection type: perspective or orthographic,

etc.
n Field of view and image aspect ratio
n Near and far clipping planes

R.W. Lindeman - WPI Dept. of Computer Science	

 4	

Perspective Projection
o Similar to real world
o Characterized by object foreshortening

n Objects appear larger if they are closer to
camera

o Need to define
n Center of projection (COP)
n Projection (view) plane

o Projection
n Connecting the object to the center of

projection

projection plane

camera

R.W. Lindeman - WPI Dept. of Computer Science	

 5	

Why is it Called Projection?

View plane"

R.W. Lindeman - WPI Dept. of Computer Science	

 6	

Orthographic (Parallel) Projection
o No foreshortening effect

n Distance from camera does not matter

o The center of projection is at infinity
o Projection calculation

n Just choose equal z coordinates

R.W. Lindeman - WPI Dept. of Computer Science	

 7	

Field of View
o Determine how much of the world is

taken into the picture
o Larger field of view = smaller object-

projection size

x

y

z

y

z θ	

field of view
(view angle)

center of projection

R.W. Lindeman - WPI Dept. of Computer Science	

 8	

Near and Far Clipping Planes
o Only objects between near and far planes

are drawn
o Near plane + far plane + field of view =

View Frustum

x

y

z

Near plane Far plane

R.W. Lindeman - WPI Dept. of Computer Science	

 9	

View Frustum
o 3D counterpart of 2D-world clip window
o Objects outside the frustum are clipped

x

y

z

Near plane Far plane

View Frustum

R.W. Lindeman - WPI Dept. of Computer Science	

 10	

Projection Transformation
o In OpenGL

n Set the matrix mode to GL_PROJECTION
n For perspective projection, use

gluPerspective(fovy, aspect, near, far);
or

glFrustum(left, right, bottom, top,
 near, far);

n For orthographic projection, use
glOrtho(left, right, bottom, top,
 near, far);

R.W. Lindeman - WPI Dept. of Computer Science	

 11	

gluPerspective(fovy, aspect, near, far)
o Aspect ratio is used to calculate

the window width

x

y

z

y

z

fovy

eye

near far Aspect = w / h

w

h

θ	

R.W. Lindeman - WPI Dept. of Computer Science	

 12	

glFrustum(left, right, bottom, top,
 near, far)

o Can use this function in place of
gluPerspective()

x

y

z

left

right
bottom

top

near far

R.W. Lindeman - WPI Dept. of Computer Science	

 13	

glOrtho(left, right, bottom, top,
 near, far)

o For orthographic projection

x

y

z

left

right bottom

top

near
far

R.W. Lindeman - WPI Dept. of Computer Science	

 14	

Example: Projection
Transformation

void display() {
 glClear(GL_COLOR_BUFFER_BIT);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(FovY, Aspect, Near, Far);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0, 0, 1, 0, 0, 0, 0, 1, 0);
 myDisplay(); // your display routine
}

R.W. Lindeman - WPI Dept. of Computer Science	

 15	

Projection Transformation
o Projection

n Map the object from 3D space to 2D screen

x

y

z

x

y

z

Perspective: gluPerspective() Parallel: glOrtho()

R.W. Lindeman - WPI Dept. of Computer Science	

 16	

Parallel Projection (The Math)
o After transforming the object to eye space,

parallel projection is relatively easy: we could
just set all Z to the same value
n  Xp = x
n  Yp = y
n  Zp = -d

o We actually want to remember Z
 – why?

x

y

z
(x,y,z)

(Xp, Yp)

R.W. Lindeman - WPI Dept. of Computer Science	

 17	

Parallel Projection
o OpenGL maps (projects) everything in

the visible volume into a canonical view
volume (CVV)

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume glOrtho(xmin, xmax, ymin,
 ymax, near, far)

(xmin, ymin, near)

(xmax, ymax, far)

Projection: Need to build 4x4 matrix to do
mapping from actual view volume to CVV

R.W. Lindeman - WPI Dept. of Computer Science	

 18	

Parallel Projection: glOrtho
o Parallel projection can be broken down

into two parts
n Translation, which centers view volume at

origin
n Scaling, which reduces cuboid of arbitrary

dimensions to canonical cube
o Dimension 2, centered at origin

R.W. Lindeman - WPI Dept. of Computer Science	

 19	

Parallel Projection: glOrtho
(cont.)
o Translation sequence moves midpoint of view

volume to coincide with origin
n  e.g., midpoint of x = (xmax + xmin)/2

o Thus, translation factors are
 -(xmax+xmin)/2, -(ymax+ymin)/2, -(far+near)/2

o So, translation matrix M1:

€

1 0 0 −(xmax+ xmin) /2
0 1 0 −(ymax+ ymin) /2
0 0 1 −(zmax+ zmin) /2
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

R.W. Lindeman - WPI Dept. of Computer Science	

 20	

Parallel Projection: glOrtho
(cont.)
o Scaling factor is ratio of cube dimension

to Ortho view volume dimension
o Scaling factors

 2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)
o So, scaling matrix M2:

€

2
xmax− xmin

0 0 0

0 2
ymax− ymin

0 0

0 0 2
zmax− zmin

0

0 0 0 1

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

R.W. Lindeman - WPI Dept. of Computer Science	

 21	

Parallel Projection: glOrtho()
(cont.)
o Concatenating M1xM2, we get transform

matrix used by glOrtho

€

M2 ×M1=

2 /(xmax− xmin) 0 0 −(xmax+ xmin) /(xmax− xmin)
0 2 /(ymax− ymin) 0 −(ymax+ ymin) /(ymax− ymin)
0 0 2 /(zmax− zmin) −(zmax+ zmin) /(zmax− zmin)
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

Refer to: Hill, 7.6.2

€

2
xmax− xmin

0 0 0

0 2
ymax− ymin

0 0

0 0 2
zmax− zmin

0

0 0 0 1

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

X

€

1 0 0 −(xmax+ xmin) /2
0 1 0 −(ymax+ ymin) /2
0 0 1 −(zmax+ zmin) /2
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

R.W. Lindeman - WPI Dept. of Computer Science	

 22	

Perspective Projection: Classical
o Side view

x

y
z

(0,0,0)

d

Projection plane

Eye (center of projection)

(x,y,z)

(x’,y’,z’)

-z

z

y
Based on similar triangles:

 y -z
 y’ d

 d
 y’ = y *
 -z

=

R.W. Lindeman - WPI Dept. of Computer Science	

 23	

Perspective Projection:
Classical (cont.)
o So (x*, y*), the projection of point, (x, y, z)

onto the near plane N, is given as

n  Similar triangles

o Numerical example
Q: Where on the viewplane does P = (1, 0.5,

-1.5) lie for a near plane at N = 1?

(x*, y*) = (1 x 1/1.5, 1 x 0.5/1.5) = (0.666, 0.333)

€

x*,y *() = N Px
−Pz

,N
Py
−Pz

$
%

&

'
(

R.W. Lindeman - WPI Dept. of Computer Science	

 24	

Pseudo Depth Checking
o Classical perspective projection drops z coordinates
o But we need z to find closest object (depth testing)
o Keeping actual distance of P from eye is

cumbersome and slow

o  Introduce pseudodepth: all we need is a measure
of which objects are further if two points project to
the same (x, y)

o Choose a, b so that pseudodepth varies from –1 to
1 (canonical cube)

€

distance = Px
2 + Py

2 + Pz
2()

€

x*,y*,z *() = N Px
−Pz

,N
Py
−Pz

, aPz + b
−Pz

$
%

&

'
(

R.W. Lindeman - WPI Dept. of Computer Science	

 25	

Pseudo Depth Checking (cont.)
o Solving:

o For two conditions, z* = -1 when Pz = -N
and z* = 1 when Pz = -F, we can set up
two simultaneous equations

o Solving for a and b, we get

€

z* =
aPz + b
−Pz

€

a =
−(F + N)
F − N

€

b =
−2FN
F − N

R.W. Lindeman - WPI Dept. of Computer Science	

 26	

Homogenous Coordinates
o  Would like to express projection as 4x4 transform

matrix
o  Previously, homogeneous coordinates for the point P =

(Px, Py, Pz) was (Px, Py, Pz, 1)
o  Introduce arbitrary scaling factor, w, so that P = (wPx,

wPy, wPz, w) (Note: w is non-zero)
o  For example, the point P = (2, 4, 6) can be expressed

as
n  (2, 4, 6, 1)
n  or (4, 8, 12, 2) where w=2
n  or (6, 12, 18, 3) where w = 3

o  So, to convert from homogeneous back to ordinary
coordinates, divide all four terms by last component and
discard 4th term

R.W. Lindeman - WPI Dept. of Computer Science	

 27	

Perspective Projection
o Same for x, so we have
 x’ = x * d / -z
 y’ = y * d / -z
 z’ = -d

o Put in a matrix form

OpenGL assumes d = 1, i.e., the image plane is at z = -1

€

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

−d() 1

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

=

x '
y '
z'
w

$

%
%
%
%

&

'

(
(
(
(

⇒

−d x
z()

−d y
z

$
% &

'
(

−d
1

$

%
%
%
%
%

&

'

(
(
(
(
(

R.W. Lindeman - WPI Dept. of Computer Science	

 28	

Perspective Projection (cont.)
o We are not done yet!

o Need to modify the projection matrix to
include a and b

 x’ 1 0 0 0 x
 y’ = 0 1 0 0 y
 z’ 0 0 a b z
 w 0 0 (1/-d) 0 1

o  We have already solved a and b

x

y
z

Z = 1 z = -1

R.W. Lindeman - WPI Dept. of Computer Science	

 29	

Perspective Projection (cont.)
o Not done yet! OpenGL also normalizes

the x and y ranges of the view frustum to
[-1, 1] (translate and scale)

o So, as in ortho, to arrive at final
projection matrix
n We translate by

o –(xmax + xmin)/2 in x
o -(ymax + ymin)/2 in y

n And scale by
o 2/(xmax – xmin) in x
o 2/(ymax – ymin) in y

R.W. Lindeman - WPI Dept. of Computer Science	

 30	

Perspective Projection (cont.)
o Final projection matrix
glFrustum(xmin, xmax, ymin, ymax, N, F)

n N = near plane, F = far plane

€

2N
xmax− xmin

0 xmax+ xmin
xmax− xmin

0

0 2N
ymax− ymin

ymax+ ymin
ymax− ymin

0

0 0 −(F + N)
F − N

−2FN
F − N

0 0 −1 0

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

R.W. Lindeman - WPI Dept. of Computer Science	

 31	

Perspective Projection (cont.)
o After perspective projection, viewing

frustum is also projected into a canonical
view volume (like in parallel projection)

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume

x

y

z

