CS 543:
 Computer Graphics

Projection

Robert W. Lindeman
Associate Professor
Interactive Media \& Game Development
Department of Computer Science Worcester Polytechnic Institute
gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)

3D Viewing and View Volume

\square Recall: 3D viewing set up

R.W. Lindeman - WPI Dept. of Computer Science

Projection Transformation

\square View volume can have different shapes

- Parallel, perspective, isometric
\square Different types of projection
\square Parallel (orthographic), perspective, etc.
\square Important to control
■ Projection type: perspective or orthographic, etc.
\square Field of view and image aspect ratio
■ Near and far clipping planes

Perspective Projection

\square Similar to real world
-Characterized by object foreshortening ■ Objects appear larger if they are closer to camera
\square Need to define
\square Center of projection (COP)
\square Projection (view) plane

projection plane
\square Projection
■ Connecting the object to the center of projection

WPI

Why is it Called Projection?

Orthographic (Parallel) Projection

\square No foreshortening effect

- Distance from camera does not matter
\square The center of projection is at infinity
\square Projection calculation
■ Just choose equal z coordinates

Field of View

-Determine how much of the world is taken into the picture
\square Larger field of view $=$ smaller objectprojection size

WPI

Near and Far Clipping Planes

■Only objects between near and far planes are drawn
\square Near plane + far plane + field of view $=$ View Frustum

WPI

View Frustum

-3D counterpart of 2D-world clip window
\square Objects outside the frustum are clipped

Projection Transformation

\square In OpenGL
■ Set the matrix mode to GL_PROJECTION
■ For perspective projection, use gluPerspective(fovy, aspect, near, far); Or
glFrustum(left, right, bottom, top, near, far);
■ For orthographic projection, use glOrtho(left, right, bottom, top, near, far);

WPI

gluPerspective (fovy, aspect, near, far)
\square Aspect ratio is used to calculate the window width

glFrustum(left, right, bottom, top, —

 near, far)
\square Can use this function in place of gluPerspective()

glOrtho(left, right, bottom, top,

 near, far)
\square For orthographic projection

Example: Projection Transformation

```
void display( ) {
    glClear( GL_COLOR_BUFFER_BIT );
    glMatrixMode( GL_PROJECTION );
    glLoadIdentity( );
    gluPerspective( FovY, Aspect, Near, Far );
    glMatrixMode( GL_MODELVIEW );
    glLoadIdentity( );
    gluLookAt( 0, 0, 1, 0, 0, 0, 0, 1, 0 );
    myDisplay( ); // your display routine
}
```


WPI

Projection Transformation

\square Projection
■ Map the object from 3D space to 2D screen

Perspective: gluPerspective()

Parallel: glortho()

Parallel Projection (The Math)

\square After transforming the object to eye space, parallel projection is relatively easy: we could just set all Z to the same value

- $X_{p}=x$
- $Y_{p}=y$
- $Z_{p}=-d$

\square We actually want to remember Z
- why?

Parallel Projection

\square OpenGL maps (projects) everything in the visible volume into a canonical view volume (CVV)

Projection: Need to build 4×4 matrix to do mapping from actual view volume to CVV

WPI

Parallel Projection: glortho

\square Parallel projection can be broken down into two parts

- Translation, which centers view volume at origin
\square Scaling, which reduces cuboid of arbitrary dimensions to canonical cube
\square Dimension 2, centered at origin

Parallel Projection: glortho WPI (cont.)

\square Translation sequence moves midpoint of view volume to coincide with origin
\square e.g., midpoint of $x=\left(x_{\text {max }}+x_{\text {min }}\right) / 2$
\square Thus, translation factors are
$-\left(x_{\max }+x_{\text {min }}\right) / 2,-\left(y_{\max }+y_{\text {min }}\right) / 2,-($ far + near $) / 2$
\square So, translation matrix M1:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -(x \max +x \min) / 2 \\
0 & 1 & 0 & -(y \max +y \min) / 2 \\
0 & 0 & 1 & -(z \max +z \min) / 2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Parallel Projection: glortho WPI

 (cont.)\square Scaling factor is ratio of cube dimension to Ortho view volume dimension
\square Scaling factors
$2 /\left(x_{\text {max }}-x_{\text {min }}\right), 2 /\left(y_{\text {max }}-y_{\text {min }}\right), 2 /\left(z_{\text {max }}-z_{\text {min }}\right)$
\square So, scaling matrix M2:

$$
\left(\begin{array}{cccc}
\frac{2}{x \max -x \min } & 0 & 0 & 0 \\
0 & \frac{2}{y \max -y \min } & 0 & 0 \\
0 & 0 & \frac{2}{z \max -z \min } & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Parallel Projection: glortho(WPI (cont.)

\square Concatenating M1xM2, we get transform matrix used by glortho

$$
\begin{gathered}
\left(\begin{array}{cccc}
\frac{2}{x \max -x \min } & 0 & 0 & 0 \\
0 & \frac{2}{y \max -y \min } & 0 & 0 \\
0 & 0 & \frac{2}{z \max -z \min } & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{gathered} \begin{aligned}
& \\
& M 2 \times M 1=\left(\begin{array}{cccc}
1 & 0 & 0 & -(x \max +x \min) / 2 \\
0 & 1 & 0 & -(y \max +y \min) / 2 \\
0 & 0 & 1 & -(z \max +z \min) / 2 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \\
& 0
\end{aligned}
$$

Refer to: Hill, 7.6.2

WPI

Perspective Projection: Classical

\square Side view

Eye (center of projection)

Based on similar triangles:

$$
\begin{aligned}
\frac{y}{y^{\prime}} & =\frac{-z}{d} \\
\Rightarrow y^{\prime} & =y * \frac{d}{-z}
\end{aligned}
$$

Perspective Projection:

\square So (x^{*}, y^{*}), the projection of point, (x, y, z) onto the near plane N, is given as

$$
\left(x^{*}, y^{*}\right)=\left(N \frac{P_{x}}{-P_{z}}, N \frac{P_{y}}{-P_{z}}\right)
$$

■ Similar triangles
\square Numerical example
Q: Where on the viewplane does $P=(1,0.5$,
-1.5) lie for a near plane at $N=1$?

$$
\left(x^{*}, y^{*}\right)=(1 \times 1 / 1.5,1 \times 0.5 / 1.5)=(0.666,0.333)
$$

WPI

Pseudo Depth Checking

\square Classical perspective projection drops z coordinates
\square But we need z to find closest object (depth testing)
\square Keeping actual distance of P from eye is cumbersome and slow

$$
\text { distance }=\sqrt{\left(P_{x}^{2}+P_{y}^{2}+P_{z}^{2}\right)}
$$

\square Introduce pseudodepth: all we need is a measure of which objects are further if two points project to the same (x, y)

$$
\left(x^{*}, y^{*}, z^{*}\right)=\left(N \frac{P_{x}}{-P_{z}}, N \frac{P_{y}}{-P_{z}}, \frac{a P_{z}+b}{-P_{z}}\right)
$$

\square Choose a, b so that pseudodepth varies from -1 to 1 (canonical cube)

Pseudo Depth Checking (cont.)

\square Solving:

$$
z^{*}=\frac{a P_{z}+b}{-P_{z}}
$$

\square For two conditions, $z^{*}=-1$ when $P_{z}=-N$ and $z^{*}=1$ when $P_{z}=-F$, we can set up two simultaneous equations
\square Solving for a and b, we get

$$
a=\frac{-(F+N)}{F-N} \quad b=\frac{-2 F N}{F-N}
$$

Homogenous Coordinates

\square Would like to express projection as 4×4 transform matrix
\square Previously, homogeneous coordinates for the point $\mathrm{P}=$ (P_{x}, P_{y}, P_{z}) was ($P_{x}, P_{y}, P_{z}, 1$)
\square Introduce arbitrary scaling factor, w, so that $P=\left(w P_{x}\right.$ $\left.w P_{y}, w P_{z}, w\right)$ (Note: w is non-zero)
\square For example, the point $P=(2,4,6)$ can be expressed as

- $(2,4,6,1)$
- or $(4,8,12,2)$ where $w=2$
- or $(6,12,18,3)$ where $\mathrm{w}=3$
\square So, to convert from homogeneous back to ordinary coordinates, divide all four terms by last component and discard $4^{\text {th }}$ term

Perspective Projection

\square Same for x, so we have

$$
\begin{aligned}
& x^{\prime}=x^{*} d /-z \\
& y^{\prime}=y * d /-z \\
& z^{\prime}=-d
\end{aligned}
$$

\square Put in a matrix form

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & (1 /-d) & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w
\end{array}\right) \Rightarrow\binom{-d(x / z)}{-d(y / z}
$$

OpenGL assumes $d=1$, i.e., the image plane is at $z=-1$

Perspective Projection (cont.)

\square We are not done yet!
\square Need to modify the projection matrix to include a and b

$$
\left|\begin{array}{c}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime} \\
\mathrm{z}^{\prime} \\
\mathrm{w}
\end{array}\right|=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \mathrm{a} & \mathrm{~b} \\
0 & 0 & (1 /-\mathrm{d}) & 0
\end{array}\right| \quad\left|\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z} \\
1
\end{array}\right|
$$

\square We have already solved a and b

Perspective Projection (cont.)

\square Not done yet! OpenGL also normalizes the x and y ranges of the view frustum to $[-1,1]$ (translate and scale)
\square So, as in ortho, to arrive at final projection matrix
\square We translate by
$\square-(x m a x+x m i n) / 2$ in x - $-(y \max +y \min) / 2$ in y

- And scale by

ㅁ $2 /(x \max -\mathrm{xmin})$ in x
$\square 2 /(y \max -\mathrm{ymin})$ in y

Perspective Projection (cont.)

\square Final projection matrix
glFrustum(xmin, xmax, ymin, ymax, N, F) $\square N=$ near plane, $F=$ far plane

$$
\left(\begin{array}{cccc}
\frac{2 N}{x \max -x \min } & 0 & \frac{x \max +x \min }{x \max -x \min } & 0 \\
0 & \frac{2 N}{y \max -y \min } & \frac{y \max +y \min }{y \max -y \min } & 0 \\
0 & 0 & \frac{-(F+N)}{F-N} & \frac{-2 F N}{F-N} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Perspective Projection (cont.)

\square After perspective projection, viewing frustum is also projected into a canonical view volume (like in parallel projection)

Canonical View Volume

