
1

Introduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

Computer Viewing
Positioning the Camera

Ed Angel
Professor Emeritus of Computer Science

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

• Introduce the mathematics of projection
• Introduce WebGL viewing functions in
MV.js

• Look at alternate viewing APIs

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

From the Beginning

• In the beginning:
-  fixed function pipeline
- Model-View and Projection Transformation
- Predefined frames: model, object, camera, clip,

ndc, window

• After deprecation
- pipeline with programmable shaders
- no transformations
- clip, ndc window frames

• MV.js reintroduces original capabilities
4Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Computer Viewing

• There are three aspects of the viewing
process, all of which are implemented in
the pipeline,

- Positioning the camera
• Setting the model-view matrix

- Selecting a lens
• Setting the projection matrix

- Clipping
• Setting the view volume

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

The WebGL Camera

• In WebGL, initially the object and camera
frames are the same

- Default model-view matrix is an identity
• The camera is located at origin and points
in the negative z direction

• WebGL also specifies a default view
volume that is a cube with sides of length 2
centered at the origin

- Default projection matrix is an identity

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Default Projection

Default projection is orthogonal

clipped out

z=0

2

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Moving the Camera Frame

• If we want to visualize objects with both positive
and negative z values we can either

- Move the camera in the positive z direction
• Translate the camera frame

- Move the objects in the negative z direction
• Translate the world frame

• Both of these views are equivalent and are
determined by the model-view matrix

- Want a translation (translate(0.0,0.0,-d);)
- d > 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Moving Camera back
from Origin

default frames

frames after translation by –d
 d > 0

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
0

Moving the Camera

• We can move the camera to any desired
position by a sequence of rotations and
translations

• Example: side view
- Rotate the camera
- Move it away from origin
- Model-view matrix C = TR

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
1

WebGL code

• Remember that last transformation
specified is first to be applied

// Using MV.js

var t = translate (0.0, 0.0, -d);
var ry = rotateY(90.0);
var m = mult(t, ry);

or

var m = mult(translate (0.0, 0.0, -d),
 rotateY(90.0););

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
2

lookAt
LookAt(eye, at, up)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
3

The lookAt Function

• The GLU library contained the function gluLookAt
to form the required modelview matrix through a
simple interface

• Note the need for setting an up direction
• Replaced by lookAt() in MV.js

- Can concatenate with modeling transformations
• Example: isometric view of cube aligned with axes

var eye = vec3(1.0, 1.0, 1.0);
var at = vec3(0.0, 0.0, 0.0);
var up = vec3(0.0, 1.0, 0.0);

var mv = LookAt(eye, at, up); Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
4

Other Viewing APIs

• The LookAt function is only one possible
API for positioning the camera

• Others include
- View reference point, view plane normal, view

up (PHIGS, GKS-3D)
- Yaw, pitch, roll
- Elevation, azimuth, twist
- Direction angles

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

