
1

Introduction to Computer
Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science

Founding Director, Arts, Research,
Technology and Science Laboratory

University of New Mexico

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

2

Models and Architectures

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

3

Objectives

• Learn the basic design of a graphics
system

• Introduce pipeline architecture
• Examine software components for an
interactive graphics system

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

4

Image Formation Revisited

• Can we mimic the synthetic camera model
to design graphics hardware software?

• Application Programmer Interface (API)
- Need only specify

•  Objects
•  Materials
•  Viewer
•  Lights

• But how is the API implemented?

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

5

Physical Approaches

• Ray tracing: follow rays of light from center of
projection until they either are absorbed by
objects or go off to infinity

- Can handle global effects
•  Multiple reflections
•  Translucent objects

-  Slow
- Must have whole data base
available at all times

• Radiosity: Energy based approach
-  Very slow

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

6

Practical Approach

• Process objects one at a time in the order
they are generated by the application

- Can consider only local lighting
• Pipeline architecture

• All steps can be implemented in hardware
on the graphics card

application
 program

display

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

7

Vertex Processing

• Much of the work in the pipeline is in converting
object representations from one coordinate
system to another

- Object coordinates
- Camera (eye) coordinates
-  Screen coordinates

• Every change of coordinates is equivalent to a
matrix transformation

• Vertex processor also computes vertex colors

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

8

Projection

• Projection is the process that combines
the 3D viewer with the 3D objects to
produce the 2D image

- Perspective projections: all projectors meet at
the center of projection

- Parallel projection: projectors are parallel,
center of projection is replaced by a direction of
projection

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

9

Primitive Assembly

Vertices must be collected into geometric
objects before clipping and rasterization
can take place

- Line segments
- Polygons
- Curves and surfaces

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
0

Clipping

Just as a real camera cannot “see” the
whole world, the virtual camera can only
see part of the world or object space

- Objects that are not within this volume are said
to be clipped out of the scene

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
1

Rasterization

• If an object is not clipped out, the appropriate
pixels in the frame buffer must be assigned colors

• Rasterizer produces a set of fragments for each
object

• Fragments are “potential pixels”
- Have a location in frame bufffer
- Color and depth attributes

• Vertex attributes are interpolated over objects by
the rasterizer

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
2

Fragment Processing

• Fragments are processed to determine
the color of the corresponding pixel in the
frame buffer

• Colors can be determined by texture
mapping or interpolation of vertex colors

• Fragments may be blocked by other
fragments closer to the camera

- Hidden-surface removal

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
3

The Programmer’s Interface

• Programmer sees the graphics system
through a software interface: the
Application Programmer Interface (API)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
4

API Contents

• Functions that specify what we need to
form an image

- Objects
- Viewer
- Light Source(s)
- Materials

• Other information
-  Input from devices such as mouse and keyboard
- Capabilities of system

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
5

Object Specification

• Most APIs support a limited set of
primitives including

- Points (0D object)
- Line segments (1D objects)
- Polygons (2D objects)
- Some curves and surfaces

• Quadrics
• Parametric polynomials

• All are defined through locations in space
or vertices

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
6

Example (old style)

glBegin(GL_POLYGON)
 glVertex3f(0.0, 0.0, 0.0);
 glVertex3f(0.0, 1.0, 0.0);
 glVertex3f(0.0, 0.0, 1.0);
glEnd();

type of object
location of vertex

end of object definition

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Example (GPU based)

1
7

var points = [
 vec3(0.0, 0.0, 0.0),
 vec3(0.0, 1.0, 0.0),
 vec3(0.0, 0.0, 1.0),
];

• Put geometric data in an array

• Send array to GPU
• Tell GPU to render as triangle

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
8

Camera Specification

• Six degrees of freedom
- Position of center of lens
- Orientation

• Lens
• Film size
• Orientation of film plane

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

1
9

Lights and Materials

• Types of lights
- Point sources vs distributed sources
- Spot lights
- Near and far sources
- Color properties

• Material properties
- Absorption: color properties
- Scattering

• Diffuse
• Specular

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

