

CS-525V: Building Effective Virtual Worlds

Evaluation

Robert W. Lindeman

Worcester Polytechnic Institute Department of Computer Science gogo@wpi.edu

Measuring Effectiveness

- How do we know if our world/technique/ application/etc. is effective?
- □ Is this a binary thing?
- □ Why measure this?
- □ How can we measure?

Qualitative vs. Quantitative

Qualitative

Look at the data, and draw conclusions

Quantitative

Form a hypothesis, and try to prove it

Both are effective, Quantitative is less time consuming to do

<u>WPI</u>

Objective vs. Subjective Measures

Objective

- Measure using performance metrics
- Speed, accuracy, etc.
- Subjective

Measure using questionnaires, interviews, etc.

□ These can either be gathered using quantitative or qualitative means

Descriptive Methods

Frequency distributions

- How many people were similar in the sense that according to the dependent variable, they ended up in the same bin
- Table
- histogram (vs. bar graph)
- Frequency polygon
- Pie chart

- Distributional shape
 - Normal distribution (bell curve)
 - Skewed distribution
 - Positively skewed (pointing high)
 - Negatively skewed (pointing low)
 - Multimodal (bimodal)
 - Rectangular
 - Kurtosis
 - High peak/thin tails (leptokurtic)Low peak/thick tails (platykurtic)

- Central tendency
 - Mode
 - □ Most frequent score
 - Median
 - □ Divides the scores into two, equally sized parts
 - Mean
 - Sum of the scores divided by the number of scores
 - Normal distribution: mode ≈ median ≈ mean
 Positive skew: mode < median < mean
 - Negative skew: mean < median < mode</p>

Measures of variability

Dispersion (level of sameness)

Range

- max min of all the scores
- Interquartile range
 - □ max min of the middle 50% of scores
- Box-and-whisker plot
- Standard deviation (SD, s, σ, or sigma)
 - □ Good estimate of range: 4 * SD
- Variance (s^2 or σ^2)

Standard scores

- How many SDs a score is from the mean
- *z*-score: mean = 0, each SD = +/-1
 - □ *z*-score of +2.0 means the score is 2 SDs above the mean
- *T*-score: mean = 50, each SD = +/-10
 - □ *T*-score of 70 means the score is 2 SDs above the mean

Bivariate Correlation

- Discover whether a relationship exists
- Determine the strength of the relationship
- Types of relationship
 High-high, low-low
 High-low, low-high
 - Little systematic tendency

Bivariate Correlation (cont.)

□ Scatter plot

R.W.

\Box Correlation coefficient: r

-1.00	0.0	. 00	+1.00
NegativelyInverse relHigh-low,	ationship	 Positively correlated Direct relationship High-high, low-low 	
High	Lo	ow Hi	igh
Strong	We	eak Str	ong
indeman - WPI Dept. of Computer Science			11

Bivariate Correlation (cont.)

- Quantitative variables
 - Measurable aspects that vary in terms of intensity
 - Rank; Ordinal scale: Each subject can be put into a single bin among a set of ordered bins
 - Raw score: Actual value for a given subject. Could be a composite score from several measured variables
- Qualitative variables
 - Which categorical group does one belong to?
 - E.g., I prefer the Grand Canyon over Mount Rushmore
 - □ **Nominal**: Unordered bins
 - Dichotomy: Two groups (e.g., infielders vs. outfielders)

Reliability and Validity

Reliability

To what extent can we say that the data are consistent?

Validity

A measuring instrument is valid to the extent that it measures what it purports to measure.

Inferential Statistics

- Definition: To make statements beyond description
 Generalize
- A sample is extracted from a population
- Measurement is done on this sample
- □Analysis is done
- An educated guess is made about how the results apply to the population as a whole

Motivation

- Actual testing of the whole population is too costly (time/money)
 "Tangible population"
- Population extends into the future "Abstract population"
- □ Four questions
 - What is/are the relevant populations?
 - How will the sample be extracted?
 - What characteristic of those sampled will serve as the measurement target?
 - What will be the study's statistical focus?

Statistical Focus

What statistical tools should be used? Even if we want the "average," which

measure of average should we use?

Estimation

Sampling error

- The amount a sample value differs from the population value
- This does not mean there was an error in the method of sampling, but is rather part of the natural behavior of samples
 - They seldom turn out to exactly mirror the population
- Sampling distribution
 - The distribution of results of several samplings of the population
- Standard error
 - □ SD of the sampling distribution

Analyses of Variance (ANOVAs)

- Determine whether the means of two (or more) samples are different
 - If we've been careful, we can say that the treatment is the source of the differences
 - Need to make sure we have controlled everything else!
 - □ Treatment order
 - □ Sample creation
 - □ Normal distribution of the sample
 - Equal variance of the groups

Types of ANOVAs

- □Simple (one-way) ANOVA
 - One independent variable
 - One dependent variable
 - Between-subjects design
- □Two-way ANOVA
 - Two independent variables, and/or
 - Two dependent variables
 - Between-subjects design

Types of ANOVAs (cont.)

- One-way repeated-measures ANOVA
 - One independent variable
 - One dependent variable
 - Within-subjects design

Two-way repeated-measures ANOVA

- Two independent variables, and/or
- Two dependent variables
- Within-subjects design

Types of ANOVAs (cont.)

- Main effects vs. interaction effect
 Main effects present in conjunction with other effects
- Post-hoc tests
 Tukey's HSD test
 Equal sample sizes
 Scheffé test
 Unequal sample sizes

Types of ANOVAs (cont.)

□ Mixed ANOVA

- □2 x 3
 - Time of day
 - Real Walking / Walking in-place / Joystick

References

Schuyler W. Huck Reading Statistics and Research, Fourth Edition, Pearson Education Inc., 2004.