

CS-525H: Immersive HCI

Introduction

Robert W. Lindeman

Worcester Polytechnic Institute Department of Computer Science gogo@wpi.edu

Course Goals

- □ Learn about designing, building, and evaluating immersive interfaces
- Look at how humans function
- Look at application areas
- □Look at usage environments
- Understand the main problems/sub-fields
- □ Build something cool!

Assignments

- Three Programming Assignments
 Each uses different technologies
- Paper summaries
 - You will write short summaries for several papers
- □ Final Project
 - Done in groups of two
 - Go deeper into one application/technology
 - Evaluate your system with a user study

Final project

- Choose
 - User population
 - Application
 - Usage environment (e.g., mobile)
- Choose I/O devices/techniques
- Design the application
- Design the interface & interaction
- □ Build the system
- □ Assess the result

Programming Assignment (cont.)

- Can be done in teams
 - Clearly define what each member will be responsible for
- Can use any software/language you like
 You must program the experience though, so don't use tools that are too high-level
- □ Samples
 - OpenGL, DirectX, Java3D, OpenSceneGraph, OpenSG, FreeVR, Android, iphone
 - Game engine code
- □ HIVE resources
 - We have many devices for you to use.
 - Field trip later in the semester

What is Virtual Reality?

□You tell me!

7


Virtual Reality Systems

- □ 1929 Link Flight Simulator
- □ 1946 First computer (ENIAC)
- I 1956 Sensorama
- □ 1960 Heileg's HMD
- □ 1965-68 The Ultimate Display
- □ 1972 Pong
- I 1973 Evans & Sutherland Computer Corp.
- □ 1976 Videoplace
- □ 1977 Apple, Commodore, and Radio Shack PCs
- □ 1979 First Data Glove [Sayre] (powerglove -89)
- □ 1981 SGI founded
- □ 1985 NASA AMES
- 1986-89 Super Cockpit Program
- □ 1990s Boom Displays
- □ 1992 CAVE (at SIGGRAPH)
- □ 1995 Workbench
- □ 1998 Walking Experiment

Link Flight Simulator

- 1929 Edward Link develops a *mechanical flight simulator*
- □ Train in a synthetic environment
- Used mechanical linkages
- Instrument (blind) flying
- http://www.wpafb.af.mil/ museum/early_years/ey1 9a.htm

Instrument panel of the Link on display

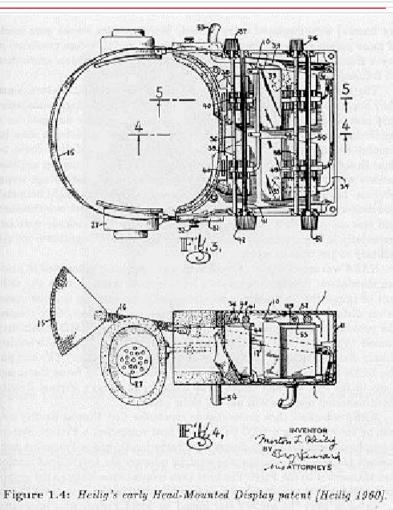
R.W. Lindeman - WPI Dept. of Computer Science The Link trainer was donated by Simulation Products Division, The Singer Co., Binghamton, NY. Interactive Media & Game Development

8

Sensorama

Morton Heilig, 1956

Motorcycle simulator - all senses • visual (city scenes) • sound (engine, city sounds) • vibration (engine) • smell (exhaust, food) Extend the notion of a 'movie'



Heilig's HMD (1960)

Simulation Mask from Heilig's 1960 patent

- 3D photographic slides
 WFOV optics with focus control
- Stereo sound
- Smell

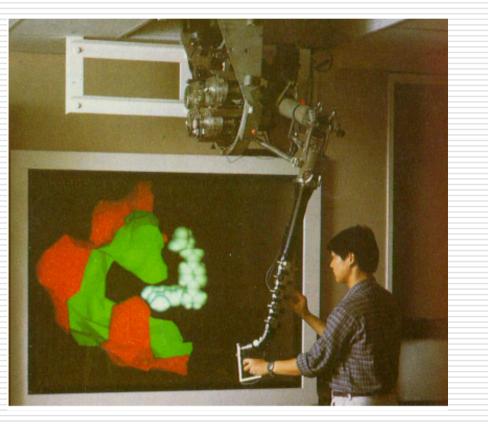
Ivan Sutherland

- □The Ultimate Display (FIPS 1965)
 - Data Visualization: "A display connected to a digital computer...is a looking glass into a mathematical wonderland."
 - Body Tracking: "The computer can easily sense the positions of almost any of our body muscles."

Ultimate Display (cont.)

- Virtual Environments that mimic real environments: "A chair display in such a room would be good enough to sit in. Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would be fatal."
- VEs that go beyond reality: "There is no reason why the objects displayed by a computer have to follow ordinary rules of physical reality with which we are familiar."

First HMD-Based VR



1965 - The Ultimate Display paper by Sutherland 1968 - Ian Sutherland's HMD

Molecular Docking Simulator

- Incorporated force feedback
- Visualize an abstract simulation

Data Gloves

- Light, electrical or metal detectors compute "bend"
- Electrical sensors detect pinches
- Force feedback mechanical linkages

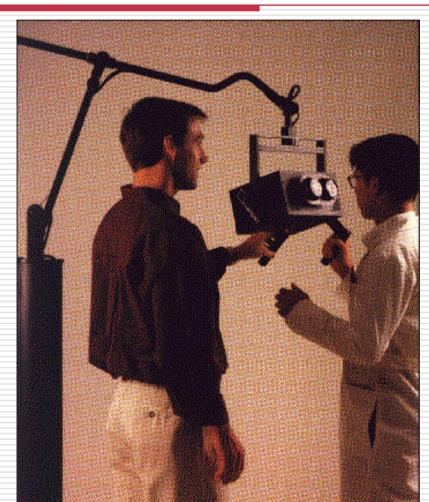
HERE VOLUTIONARY POWER GLOVI. File y NEVTENDEL is 5 - Contractive follower: Excelled gase at with the digest based Process before manipulation of the sector of a pay Draws before manipulation of the set Prove di NEVTENDO I state di score at . Mall HERE SCHERE Schweit ung Scheinunget.

(HITTHER) ALCOLUTION AND A

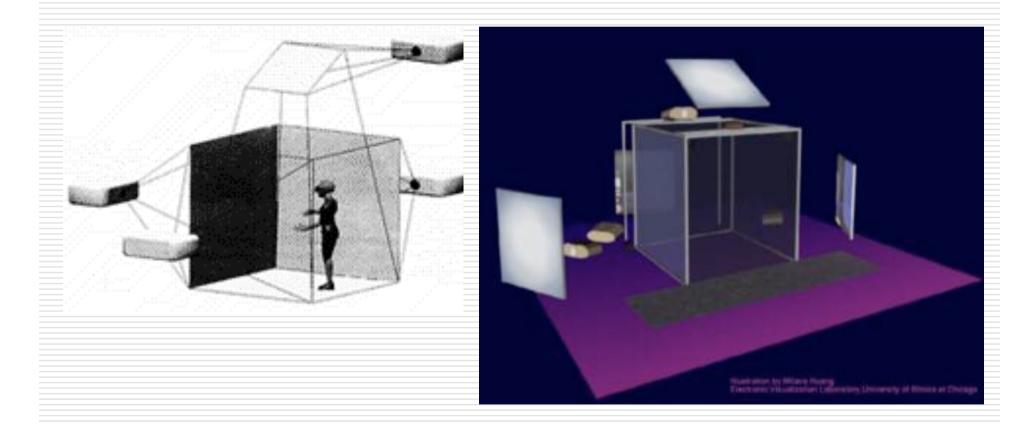
How Comp. and Comp.

1985 - NASA Ames HMD

- McGreevy and and Humphries
 - Wearable immersive HMDs
 - LCD "Watchman" displays
 - LEEP Optics
- Led to VIVID, led by Scott Fisher



R.W. Lindeman - WPI Dept. of Computer Science Interactive Media & Game Development 16


FakeSpace Boom Display: Early 1990s

CAVE - 1992

Virtual Workbench-1995

(Responsive Workbench, Immersidesk, etc.)

Current Best VE

- □ UNC Pit Experiment
- Fear of Heights a Strong Response
- Thousands of visitors
- Compelling Experience
 Haptics

 - Low Latency
 - High Visual Quality

20

VPL Founded - 1985

 First VR Company
 VPL Research by Jaron Lanier and Thomas
 Zimmerman
 Data Glove
 Term: Virtual Reality

1995 - Effectiveness of computer-generated (VR) graded exposure in the treatment of acrophobia in American Journal of Psychiatry

Major Reinvigoration: Hardware Evolution

High expense

PC performance surpasses Graphics supercomputers

- SGI RealityEngine (300k tris 1993)
- XBOX (150 mil tri/sec 2001)
- XBOX360 (500 mil tri/sec 2005)
- WiiMote/MotionPlus
- Sony MOVE (SHOW MOVIE!)
- MS Kinect (SHOW MOVIE!)

□ Large LCDs are "cheap"

3D displays are here Useful?

Why Study Immersive HCI?

- Relevant to real-world tasks
 Can use familiarity to ease adaptation
 - Can increase realism of experience
- Mature technology
 - Cheap, robust solutions
 - Need to create interface mappings
- 3D interaction is difficult
 - Many VR/gaming systems lack necessary cues
 - Adapting WIMP techniques is not adequate

Why Study Immersive HCI? (cont.)

- Current approaches are either too simple or unusable
 - Since users have problems, dumb it down!
 - Need to be able to perform all actions though!
- □ Ripe area for study
 - Very hot area of HCI
 - We know a lot about doing things in 2D
 - And also about doing things in the real world

A Brief History (cont.)

- □ HCI draws on
 - Perception
 - Cognition
 - Linguistics

...

- Human factors
- Ethnography
- Graphics design
- Computer science

A Brief History (cont.)

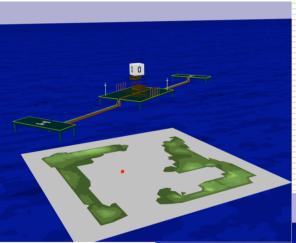
- Technology developments also drove growth
 - Flight simulators
 - 3D Graphics
 - Augmented Reality (AR)
 - Virtual Reality (VR)
 - Flight

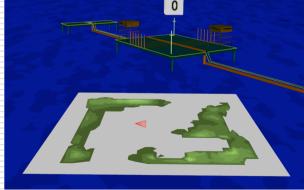
Basic Interaction Tasks in VR WPI (Bowman *et al.*)

- Object Selection
 - What do I want to manipulate?
- Object Manipulation
 - How can I manipulate it?
- Navigation
 - Wayfinding: How do I know where I am, and how to get where I am going?
 - Travel: How do I get there? (locomotion)
- □ System Control
 - How do I change system parameters?
- Symbolic Input
 - Inputting text and numbers

Dealing with Objects

- Problems
 Ambiguity
 - Distance
- Selection Approaches
 - Direct / enhanced grabbing
 - Ray-casting techniques
 - Image-plane techniques
- Manipulation Approaches
 - Direct position / orientation control
 - Worlds in miniature
 - Skewers
 - Surrogates


Courtesy: D. Bowman



Navigation: Wayfinding

- People get lost/disoriented easily
- Traditional tools
 Maps (North-up vs. Forward-up)
 - Landmarks
 - Spoken directions
- Non-traditional
 Callouts
 Zooming

Images: http://vehand.engr.ucf.edu/handbook/Chapters/Chapter28/Chapter28.html

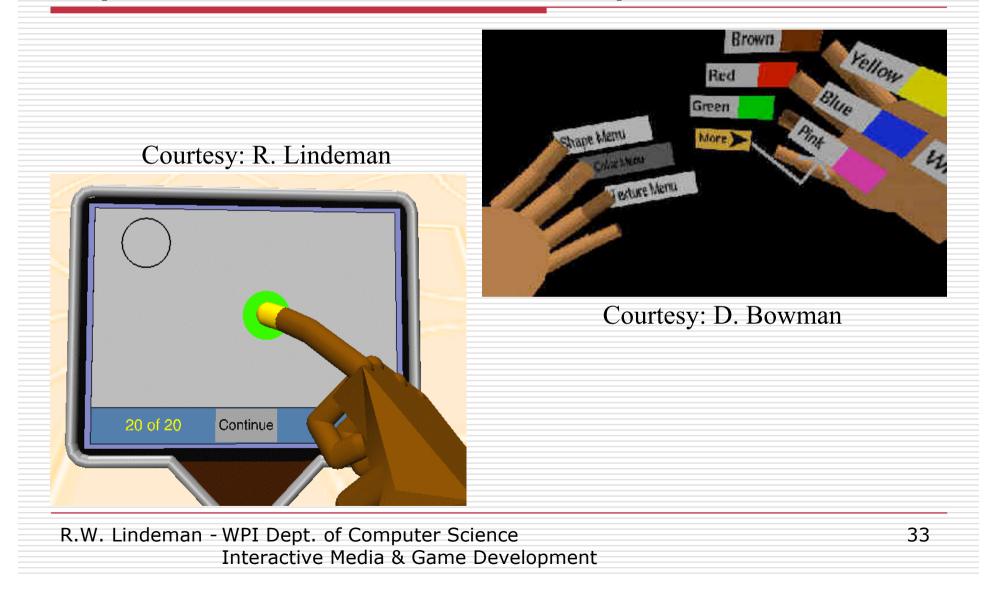
Navigation: Travel

- Problems
 - Limited physical space, unlimited virtual

CLIP

- space
- Cables
- Approaches
 - Fly where you point/look
 - Treadmills
 - Walking in placeBig track ball

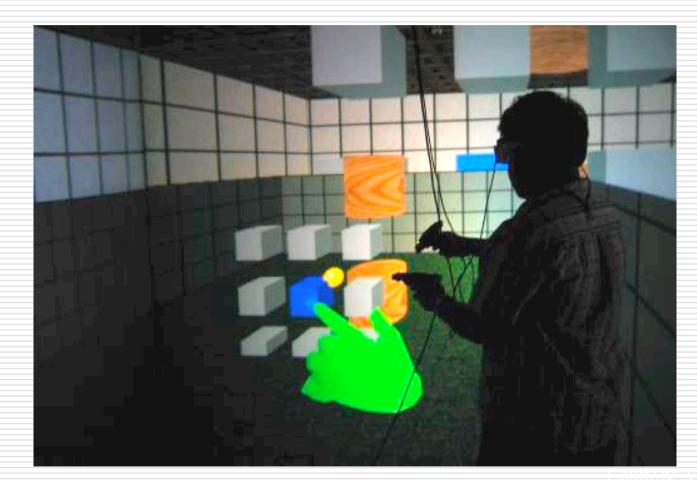
Image: www.virtusphere.com



System Control

- Need to manipulate widgets
 - Lighting effects
 - Object representation
 - Data filtering
- Approaches
 - Floating windows
 - Hand-held windows
 - Gestures
 - Menus on fingers

System Control Examples



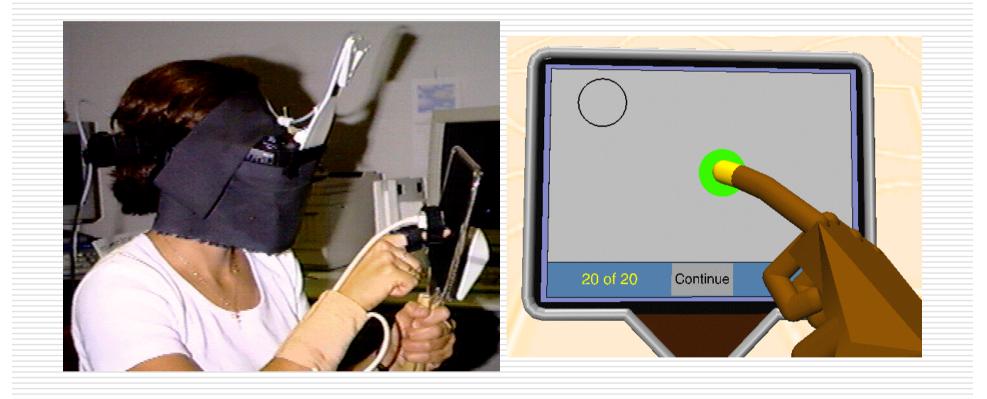
User, Task & Environment

- The "optimal" interface will depend on the capabilities of the user, the nature of the task being performed, and the constraints of the environment.
- □User
 - Dexterity, level of expertise
- □Task
 - Granularity and complexity of task
- Environment
 - Stationary, moving, noisy, etc.

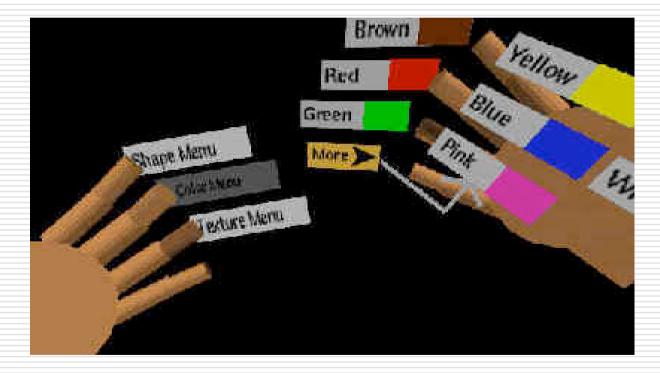
Direct Manipulation

Can We Do WIMP in VR?

Desktop Interaction: SensAble *PHANToM*



Wearable Interaction with Haptics: Immersion *CyberGrasp*



Wearable Interaction: Rob's *Hand-Held Windows*

How Do We Do Menus?

Interface Devices

Augmented Reality (AR)

