
CS 4732:
Computer Animation

Kinematic Linkages

Robert W. Lindeman
Associate Professor

Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute

gogo@wpi.edu

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

2	

Kinematics
 The world is inherently relative

 E.g., how do we define the planets?

 Most of this is hierarchical
 Moon relative to the Earth, Earth to Sun
 Things are on top of, connected to, etc.

 Here we are interested in animating objects
whose motion is relative to other objects
 Many things are naturally hierarchical

Motion Hierarchies
 Sequence of relative motions
 Linked appendages or Linkages
 These motions are typically restricted

 Position of moon can be specified with 1 DOF
 Called reduced dimensionality

 Determining position parameters over
time is called kinematics

 Limbed motion is most common use

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

3	

Two Main Flavors of Kinematics
 Forward kinematics

 Animator specifies rotational parameters at
joints

 End effector position is well defined

 Inverse kinematics
 Animator specifies the position of the end

effector
 System solves for joint angles
 Many solutions are possible!

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

4	

Forward Kinematics Example

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

5	

Inverse Kinematics Example

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

6	

Hierarchical Modeling
 Tree-like hierarchy of relative location

constraints
 Moons, planets, suns, galaxies, etc.

 Many models use end-to-end connections
 Also called articulated figures

 Much of this comes from robotics
 Linkages are called manipulators
 Objects are called links
 Connections are called joints
 Free end is called the end effector
 Object coordinate system is called the frame

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

7	

Joints
 Robotics usually deals with revolute or

prismatic joints

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

8	

Joints (cont.)
 Each direction of movement is called a

Degree of freedom (DOF)
 Simple joints have one DOF

 E.g., a hinge

 Complex joints have multiple DOFs
 E.g., a ball-and-socket joint

 We usually model these as multiple one-
DOF joints
 But you can also just use, e.g., a quaternion

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

9	

Complex Joints

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

10	

Hierarchical Data Structure
 Articulated figures can be defined using a

tree of nodes and arcs (edges)
 Root node is specified in world

coordinates
 All other nodes are relative

 “Up the hierarchy” means closer to root
 A parent is above a child node
 A leaf is an end effector
 A node is an object, and an arc is a joint
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

11	

Hierarchical Data Structure
(cont.)
 Root arc defines the location of the root

node in world space
 And therefore all nodes in the tree!

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

12	

Anatomy of a Nodes & Arcs
 A node contains all the static information to

get it ready for articulation
  Information about geometry, etc. for drawing
 An optional transformation to position it at the

desired center of rotation

 An arc contains a static and a dynamic part
 Static transformation in parent space to the

location of the node
  This is the link’s “neutral” position relative to its parent

 Dynamic transformation describing the actual
joint articulation

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

13	

Anatomy of a Nodes & Arcs
(cont.)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

14	

Hierarchy Example

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

15	

How to Apply Transformations
 Each node has an arc relative to its

parent
 How would you represent this in OpenGL?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

16	

How to Apply
Transformations (cont.)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

17	

How to Apply
Transformations (cont.)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

18	

How to Apply
Transformations (cont.)
  The rotational transformation is applied before the

arc’s constant transformation
  If there is an optional transformation, it is applied

before the rotation

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

19	

Multiple Appendages

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

20	

Applying Forward Kinematics
 We need to walk the tree in a depth-first manner

  Apply the transforms
  Draw geometry
  Save the current state
  Recursively traverse each child arc, restoring the saved

state before diving in

 A pose vector is used to define each DOF in the tree
  These DOFs are set using anything you like!

  Such as key framing, physics, etc.

 How would this look in code?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

21	

Inverse Kinematics
 Animator specifies

 Position (+ orientation) of the end effector
 Starting pose vector

 Computer finds
 The final pose vector (joint angles)

 May be 0, 1, or many solutions
 If no solutions, problem is probably

overconstrained
 Too many solutions: underconstrained
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

22	

Inverse Kinematics (cont.)
 The reachable workspace is the volume

the end effector can reach.
 After finding the final pose vector,

interpolate
 May have to break the motion down into

several intermediate poses to get good
control

 If the motion is simple, just interpolate
 If it is complex, then we use the Jacobian
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

23	

The Jacobian
 An incremental approach
 Employs a matrix of values that relates

changes in joints to end effector position
and orientation

 End effector is iteratively nudged until
the final configuration is attained within a
given tolerance

 The Jacobian is just one iterative
approach

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

24	

Simple Systems:
Analytic Solutions
 Consider a 2D example, with links L1 & L2

 If one end of L1 is fixed to a base
 Any location closer than |L1 - L2| or farther

than |L1 + L2| is unreachable

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

25	

Simple Systems:
Analytic Solutions (cont.)
 If we place the end effector at an (X, Y)
 The two angles θ1 & θ2 can be computed

using the distance and the law of cosines
(see book)

 In this simple case, there are only two
solutions

 As you increase the number of DOFs,
things get very complex, very fast!

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

26	

Incremental Solutions
 For most things we want to do, analytic

solutions are not available.

 Instead, we carry out a series of changes
that move us incrementally closer

 Several methods exist, and most involve a
matrix of partial derivatives
 This is called the Jacobian

 So, the Jacobian is a way of representing
the change in position/orientation of all the
degrees of freedom in a kinematic chain

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

27	

Formulating the Jacobian
 Consider the six equations:

 Using the chain rule, we can rewrite as
the change in outputs based on changes
in inputs:

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

28	

y1 = f1(x1, x2, x3, x4, x5, x6)
y2 = f2 (x1, x2, x3, x4, x5, x6)
y3 = f3(x1, x2, x3, x4, x5, x6)
y4 = f4 (x1, x2, x3, x4, x5, x6)
y5 = f5(x1, x2, x3, x4, x5, x6)
y6 = f6 (x1, x2, x3, x4, x5, x6)

dyi =
!fi
!x1

dx1 +
!fi
!x2

dx2 +
!fi
!x3

dx3 +
!fi
!x4

dx4 +
!fi
!x5

dx5 +
!fi
!x6

dx6

Formulating the Jacobian (cont.)
 Or in vector notation:

 The Jacobian can be thought of as
mapping the velocities of X to the
velocities of Y

 At any point in time, the Jacobian is a
function of the current values of xi

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

29	

dY = !F
!X

dX

Formulating the Jacobian (cont.)
 To apply the Jacobian to a linked

appendage
 The input variables, xi, become the joint

values
 The output variables, yi, become the end

effector position and orientation

 This relates the velocities of the joint
angles, , to the velocities of the end effector
position and orientation,

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

30	

!Y
!!

Y = [px py pz!x!y!z]
T

V = !Y = J(!) !!

Formulating the Jacobian (cont.)
 V is the vector of linear and rotational

velocities
 Represents the desired change in the end

effector

 The desired change will be based on the
difference between the current position/
orientation and the goal configuration

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

31	

V = !Y = J(!) !!

V = [vxvyvz!x!y!z]
T

Formulating the Jacobian (cont.)
  is a vector of joint value velocities, or

the changes to the joint parameters, which
are the unknowns of the equation

 J, the Jacobian, is a
matrix that relates
the two and is a function
of the current pose

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

32	

!!

!! = [!!1 !!2... !!n]
T

J =

!px
!!1

!px
!!2

... !px
!!n

!py
!!1

!py
!!2

...
!py
!!n

...
!"z

!!1

!"z

!!2
... !"z

!!n

"

#

$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'

An Example
 Consider simple planar linkage

 The joint axes are coming out of the screen
 We want to find θ1, θ2 & θ3

 V is the desired change:
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

33	

An Example (cont.)
  The effect of an incremental rotation, gi, can be

determined by crossing the joint axis and the
vector from the joint to the end effector, Vi
  These form the columns of the Jacobian

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

34	

Solutions Using the Inverse
Jacobian
 Once the Jacobian has been computed,

we need to solve the equation:

 In the case that J is a square matrix, the
inverse of the Jacobian, J-1, is used to
compute the joint angle velocities given
the end effector velocities

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

35	

V = J !!

J !1V = !!

Solutions Using the Inverse
Jacobian (cont.)
 If no inverse Jacobian exists, the system is

said to be singular for the given joint angles
 A linear combination of joint angle velocities

cannot be formed to produce desired end
effector velocities

 This can be solved if there are more DOFs
than constraints to be satisfied
 Leads to:

 A potentially infinite number of solutions
 A non-square Jacobian

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

36	

Solutions Using the Inverse
Jacobian (cont.)
 Lack of a square Jacobian can be

remedied using a pseudoinverse, J+
 If there are more columns than rows in J

 If there are more rows than columns in J

 Book gives details on further steps

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

37	

J + = JT (JJT)!1

J + = (JT J)!1JT

Cyclic Coordinate Descent (CCD)
 Consider each joint sequentially, from

the outermost inwards
 Choose an angle that best gets the end

effector to the goal position

 Let’s look in more detail
 http://freespace.virgin.net/hugo.elias/

models/m_ik2.htm

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

38	

More References
 http://freespace.virgin.net/hugo.elias/

models/m_ik2.htm
 http://grail.cs.washington.edu/projects/

styleik/

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

39	

