

CS 4732: Computer Animation

Key Frames & Shape Changes

Robert W. Lindeman

Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu

Key Framing

- Key frames define important poses during an animation
 - Specified by animator
 - Computer fills in 'tweens
- How should the computer interpolate as desired by the animator?
 - For curves?
 - For shapes?

Key Framing (cont.)

- Two main problems
 - Correspondence
 - Interpolation method
- ☐ For curves
 - One could require the curves to have same number of control points
 - Interpolate control points, regenerate curve

Key Framing (cont.)

- □ For shapes
 - One could require the shapes to have the same topology
 - Apply physics-based simulation
 - Or use key framing for more control
- Shape animation used a lot for facial animations

Shape Animation

- What does it mean for shapes to be different?
 - Uniform scaling?
 - Is a square the same as a rectangle?
- Pulling/pushing vertices
 - Can be tedious/time consuming
 - Can displace neighbors by some influence function

2D Shape Deformation

- One approach to deformation is to
 - Embed the vertices of the shape within a regular grid
 - Note the relative locations of the vertices to the grid intersections
 - Apply deformations to the grid
 - Recalculate the deformed vertex positions using bilinear interpolation
- Allows for more-efficient recalculation
- Makes it easier for the animator to specify deformation

WPI

2D Shape Deformation (cont.)

$$\begin{aligned} P_{u0} &= (1-u)P_{00} + uP_{10} \\ P_{u1} &= (1-u)P_{01} + uP_{11} \\ P_{uv} &= (1-v)P_{u0} + vP_{u1} \\ &= (1-u)(1-v)P_{00} + (1-u)vP_{01} + u(1-v)P_{10} + uvP_{11} \end{aligned}$$

(1-u)

Polyline Deformation

- Similar to grid deformation
- Calculate the relative position of the vertices to a polyline
- ☐ Good for snakes, tentacles, etc.

WPI

Polyline Deformation (cont.)

Free Form Deformation (FFD)

- ■Extend 2D technique to 3D
 - Use cubic (or other) interpolation instead of bilinear
 - Embed the shape within a grid defined by three axes
 - Record the locations of the vertices within the grid
 - Deform the grid
 - Calculate the new positions

FFD (cont.)

- Continuity can be insured in the same way as in 2D
- FFDs can be applied in sequence or hierarchically as well.
- Animation can be carried out by
 - Moving the control points over time
 - Moving the shape through the distorted space
 - Can define a "tool" and deform shapes with it

FFD Animation

- Control points can be deformed based on
 - Physical simulation, e.g., a ball hitting a sponge
 - Key framing
 - Facial simulation (e.g., bones, muscles, etc.)
 - Any function you can think of!

FFD Animation (cont.)

FFD Animation (cont.)

"Tools" for distortion

FFD Animation (cont.)

Bones, Joints & Muscles

- How does all this relate to modern tools for animating figures?
- Bones as reference objects
 - Link length, joints, etc.
 - Bone movement constrained by muscles, etc.
- Skin defined in space as a spring-mass model
- Deformation is a combination of FFD & springs

Bones, Joints & Muscles (cont.)

- Bones move
- FFD lattice "anchored" to bone

Spring-mass model moves FFD control

points

3D Morphing

- □Smoothly change one 3D shape into another
- □ Two main approaches
 - Volume based
 - Surface based
- Which one to use depends on properties of the shapes, and the desired effect

Volume-Based 3D Morphing

- □ Represent each shape shape as a volume
- Morph one volume to another
- □ Can be expensive
- Does not take into account properties that might be important for animation
- Not used as much as surface-based morphing

WPI

Terms Used in Surface-Based

- □ Object
 - Entity that has 3D surface geometry
- □ Shape
 - Set of points in object space that make up an object's surface
- Model
 - Any complete description of the shape of an object
- One 3D object may have several models that describe its shape

More Terms

□Topology

- The number of holes an object has, and the number of bodies in the object
- The vertex/edge/face connectivity of a polyhedron

□Genus

- How many holes an object has
- Sphere is *genus 0*
- Doughnut is *genus 1*

Surface-Based 3D Morphing

- Two main problems to solve
 - Vertex correspondence problem
 - □ Finding a mapping for each vertex on one shape to a vertex on the other
 - Interpolation problem
 - Creating a set of intermediate objects that move from one to the other
- Shapes typically have different surface topologies
 - Connectivity of vertices
 - Some objects may have "holes" in them

Surface-Based 3D Morphing (cont.)

- ☐ If the topologies match
 - Just interpolate 3D vertex positions over time
- □ If star-shaped object
 - Find distance to point in *kernel*, and interpolate

Mapping Onto a Sphere

- □ Several approaches
 - Project all vertices, edges, etc. onto the surface of a sphere
 - Then take the union of the vertices/edges for both objects
 - Then project back
 - Then perform vertex-by-vertex interpolation
- Can lead to an explosion of new edges
- Does not attempt to match edges
- Other approaches (in book) try this

2D Morphing

- Usually an image-based post-process
- Transform a source image into a destination image
- Main task
 - Identify corresponding features of the two images.
- Two main approaches
 - User-defined coordinate grid
 - Feature lines

User-defined Coordinate Grid

- □ Image-based approach
- User defines a curvilinear grid, where main features lie within corresponding grid squares
- □ Intermediate images are generated by
 - Interpolating the grid points
 - □ Linear, or higher-order using adjacent key frames
 - Stretching/compressing pixels from the source to the intermediate, and from the destination to the intermediate
- The two images are cross dissolved

User-defined Coordinate Grid (cont.)

□ Grids

Image A with grid points and curves defined

Image B with grid points and curves defined

Feature-based Morphing

- User specifies pairs of lines on source and destination images
 - Lines should cover some features
- A mapping for each pixel to each feature line in each image is established
- Intermediate line locations are then determined using interpolation
 - Either endpoints, or center+orientation
- A weighted average is used to generate the intermediate images
- Cross-dissolve is again used

Some Examples

- http://davis.wpi.edu/~matt/courses/
 morph/
- http://morph.cs.st-andrews.ac.uk/fof/ index.html
- http://www.fantamorph.com/index.html