CS 563 Advanced Topics in Computer Graphics Regular Grids

by Damon Blanchette

What is a regular grid?

Grid with a ray

(b)

What kind of savings are we talking about?

$O(\sqrt[3]{n})$ cells
$O(\sqrt[3]{n})$ objects

Best case: $O(\log n)$ intersections

How do we make a grid?

(a)

1. Add the objects
2. Compute the bounding box
3. Set up the cells

Part 1: Add the objects

Grid* grid_ptr = new Grid; grid_ptr->add_object(sphere_ptr);

Part 2: Compute the bounding boxes

Part 3: Set up the cells

vector<GeometricObject*> cells;

$$
\begin{aligned}
& s=\left(w_{x} w_{y} w_{z} / n\right)^{1 / 3} \\
& n_{x}=\operatorname{trunc}\left(m w_{x} / s\right)+1 \\
& n_{y}=\operatorname{trunc}\left(m w_{y} / s\right)+1 \\
& n_{z}=\operatorname{trunc}\left(m w_{z} / s\right)+1
\end{aligned}
$$

Number of cells will be around $m^{3} n$

I ndexing: Which Cell is my Home?

vector<GeometricObject*> cells;
index of the $\left(i_{x}, i_{y}, i_{z}\right)$ cell $=i_{x}+n_{x} i_{y}+n_{x} n_{y} i_{z}$

Which Cell is my Home?

(a)

(b)

Which Cell is my Home?

$$
\begin{aligned}
& f\left(p_{x}\right)\left(p_{x}-p_{0 x}\right) /\left(p_{1 x}-p_{0 x}\right) \in[0.0,1.0], \\
& i_{x}=\left\lfloor n_{x} f\left(p_{x}\right)\right\rfloor \in\left[0, n_{x}\right]
\end{aligned}
$$

Traversal

If the ray misses the grid's bounding box return false

If the ray starts inside the grid find the cell that contains the ray origin
Else
find the cell where the ray hits the grid from the outside

Traverse the grid

Traversing the Grid

(a)

(b)

(a)

(b)

(c)

$$
\begin{aligned}
d t_{x} & =\left(t_{x \text { max }}-t_{x \text { min }}\right) / n_{x} \\
d t_{y} & =\left(t_{y \text { max }}-t_{y \text { min }}\right) / n_{y} \\
d t_{z} & =\left(t_{z \text { max }}-t_{z \text { min }}\right) / n_{z}
\end{aligned}
$$

Traversing - Next Cell

(a)

(b)

1. Compute $t_{\text {xnext }}$ and $t_{\text {ynext }}$ for the initial cell
2. Specify a condition to terminate the algorithm
3. Step the ray through the grid

Transformed Objects

What about a BVH?

$$
?
$$

References

- Suffern, Kevin. Ray Tracing from the Ground Up. A.K. Peters, 2007

