CS 563 Advanced Topics in Computer Graphics Skin and Participating Media

by Emmanuel Agu

Outline

- Nvidia
 - Optix Real Time Ray tracer
 - Shader library
- Skin
 - BSSRDF
 - Dipole Model (Donner and Jensen)
 - Multiple Dipole (Donner and Jensen)
- Participating Media
 - Examples
 - Model

Optix Real Time Raytracer

- Ray tracing on GPUs been hot research topic
- New games, applications incorporating ray tracing
- Nvidia written real time ray tracer
- Released SDK to developers
- Needs high end Nvidia graphics card

Nvidia Shader Library

- Some useful examples: worth taking a look
- Drawback: Have to infer non-real time case
- Great implementation insights

• BSSRDF: bidirectional scattering surface reflectance distribution function

Note: BSSRDF formulated by Nicodemus *et al*, accounts For light entering at one point/angle and leaving at another

- BSSRDF has 8 degrees of freedom (2 positions, 2 orientations)
- Hard to capture in the general case
- Brute force Monte Carlo simulation very expensive

Diffusion approximation

- Light distribution in highly scattering media tends to become isotropic
- We can a find a diffuse BSSRDF $R_d(r)$ where $r = ||\mathbf{x}_i - \mathbf{x}_o||$
- 1D instead of 8D!
- Also known as "dipole model"

- Stam '95: first to model multiple scattering as a diffusion process
- Jensen *et al* SIGGRAPH '01: BSSRDF + Diffusion approximation of multiple scattering
- Single scattering + diffusion approximation
- Even highly scattering medium becomes blur since each scattering blurs light
- Simple solution for 1 isotropic source in infinite medium

Diffusion approximation

Diffusion Approximation

Dipole Diffusion Approximation

- More accurate
- Replace volumetric light source with 2 point light sources (one above surface, one below)

Dipole Diffusion Approximation

[Jensen et al.]

BRDF

[Jensen et al.]

Multiple Dipole Model Donner and Jensen, SIGGRAPH '05

- Dipole approximation assumed homogeneous medium and semi-infinite thickness
- Multiple dipole model: Multiple layers, different optical properties, arbitrary thickness
- Apply Kubelka Munk theory in freq space

 $\bigcirc z_{n-1}$

Spectral Rendering Model Donner and Jensen, SIGGRAPH '06

- Accounts for both surface reflection and subsurface scattering
- Uses only 4 parameters, amount of oil, melanin and haemoglobin in skin
- generate spectral diffusion profiles by modelling skin as two-layer translucent material using the mutipole diffusion approximation

Spectral Rendering Model Donner and Jensen, SIGGRAPH '06

- Two-layer translucent material
- Very accurate results

Figure 14: Two layer skin model

Participating Media

- So far assumed vacuum: radiance unchanged along ray
- Participating media affects radiance along ray
 - Absorption
 - Emission
 - Scattering
 - In-scattering
 - Out-scattering
- Examples of participating media (volume scattering)
 - Atmosphere
 - Smoke
 - Haze
 - Clouds
- Some media homogenous, some inhomogenous

 Absorption Emission

Scattering

Homogeneous

- Constant particle density
- Uniform particle types distribution
- Inhomogeneous
 - Varying particle density
 - Varying particle distribution

Absorption

- Light is absorbed by medium
- Ray radiance decreases through the medium
- Absorption crossed section σ_a
 - Light absorption probability density per unit distance traveled in medium
 - Units $\rightarrow m^{-1}$
 - $dt \rightarrow through-medium-travel unit$
 - Values may be larger than 1
 - Influence factors
 - Position (p)
 - Direction (ω)
 - Spectrum

- Change in radiance per unit
 - Difference between incoming and outgoing radiance

$$dL_o(p,\omega) = L_o(p,\omega) - L_i(p,\omega)$$

- Absorbed radiance
 - Traveled a distance d through medium

Normal probability density function (Gaussian)

Absorption

Emission

- Emission
 - Light is emitted by the medium
- Emitted radiance: $L_{ve}(p,\omega)$
 - Independent of incoming light
- Change in radiance per unit

$$dL_o(p,\omega) = L_{ve}(p,\omega)dt$$

Emission

Out-Scattering

- Out-scattering
 - Light is scattered out of the path of the ray
 - Probability density for scattering: σ_s
 - Reduction in radiance is given by

$$dL_o(p,\omega) = -\sigma_s(p,\omega)L_i(p,-\omega)dt$$

Extinction

- Total radiance reduction
 - Absorption
 - Scattering
- Attenuation or extinction

• Coefficient:
$$\sigma_t$$

 $\sigma_t(p,\omega) = \sigma_a(p,\omega) + \sigma_s(p,\omega)$

Change in radiance per unit

$$dL_o(p,\omega) = -\sigma_t(p,\omega)L_i(p,-\omega)dt$$

Beam Transmittance

Beam transmittance T_r

Transmittance

Transmittance

- Fraction of light that is transmitted between two points
- Values between 0 and 1
- Properties
 - $Tr(p \rightarrow p) = 1$
 - In vacuum: $Tr(p \rightarrow p') = 1$, for all p'
 - Multiplicative: $Tr(p \rightarrow p') = Tr(p \rightarrow p') Tr(p' \rightarrow p')$

Beer's Law

$$T_r(\mathbf{p} \to \mathbf{p'}) = e^{-\int_0^d \sigma_t(\mathbf{p} + \omega t, \omega)dt}$$

Optical thickness

$$\tau(\mathbf{p} \to \mathbf{p}') = \int_0^d \sigma_t(\mathbf{p} + \dot{\omega} t, \omega) dt$$

- Homogeneous medium
 - σ_t is position independent
 - Transmittance reduced to Beer's Law

$$T_r(\mathbf{p} \to \mathbf{p'}) = e^{-\sigma_t d}$$

Beer's Law

Beer's Law

 $A = \alpha lc$

- A = amount of light absorbed
- *α* = Absorption coefficient or molar absorptivity of medium
- / = distance light travels through medium
- c = Concentration or particle density

In-Scattering

- In-scattering
 - Outside light scatters converging to ray path
 - Phase functions to represent scattered radiation in a point

- Phase function (PF)
 - Volumetric analog of BSDF
 - Normalization constraints
 - PF defines a direction's scattering probability distribution

$$\int_{S^2} p(\omega \to \omega') d\omega' = 1$$

Change in radiance per unit

 $dL_o(p,\omega) = S(p,\omega)dt$

S(p,w) includes volume emission

- BSDFs for volume scattering
- Vary complexity according to medium
 - Isotropic
 - Anisotropic
- Properties
 - Direction reciprocity
 - May also be classified as
 - Isotropic uniform scattering
 - Anisotropic variable scattering

- Isotropic
 - Basic PFs
 - PFs is constant
 - Since
 - Area of sphere = $4\pi r^2$
 - pfS are normalized (r =1)

$$p_{isotropic}(\omega \rightarrow \omega') = \frac{1}{4\pi}$$

- Rayleigh
 - Very small particles
 - Acurately describes light scattering when
 - Particle radii < light wavelength
 - Good for atmospheric simulation
- Mie
 - Based on Maxwell's equations
 - Broader range of particle sizes
 - Good for fog and water droplets simulation

- Henyey and Greenstein
 - Easy to fit
 - Single control parameter
 - Controls relative proportion of forward backward scattering
 - g ∈ (-1, 1)
 - g < 0: back scattering</pre>

$$p_{HG}(\cos\theta:g) = \frac{1}{4\pi} \frac{1-g^2}{(1+g^2-2g(\cos\theta))^{3/2}}$$

Henyey-Greenstein Phase Function

g: average phase angle

Increase complexity by combination

$$p(\cos\theta) = \sum_{i=1}^{n} w_i p_{HG}(\cos\theta : g_i)$$

- More efficient version
 - Avoids 3/2 power computation
 - $k \sim 1.55g 0.55g^3$

$$p_{Schlick}(\cos\theta) = \frac{1}{4\pi} \frac{1-k^2}{(1-k\cos\theta)^2}$$

References

- Paulo Gonçalves de Barros, CS 563 talk, Spring 2008
- Pat Hanrahan, CS 348B slides, 2009
- Matthias Zwicker, UCSD CSE 168 slides, Spring 2006
- Clemens Brandorf, Rendering Human skin
- Hill and Kelley, Computer Graphics using OpenGL (3rd edition)
- Matt Pharr, Greg Humphreys "Physically Based Rendering", Chapter 13
- Dorsey and Rushmeier, Modeling of Digital Materials
- Akenine-Moller, Haines and Hoffman, Real Time Rendering, 3rd edition