CS 563 Advanced Topics in Computer Graphics *Microfacet BRDFs and Scattering*

by Emmanuel Agu

Recall

- BRDFs have evolved historically
- 1970's: Empirical models
 - Phong's illumination model
- 1980s:
 - Physically based models
 - Microfacet models (e.g. Cook Torrance model)
- 1990's
 - Physically-based appearance models of specific effects (materials, weathering, dust, etc)
- Early 2000's
 - Measurement & acquisition of static materials/lights (wood, translucence, etc)
- Late 2000's
 - Last week: Measurement & acquisition of time-varying BRDFs (ripening, etc)

Physically-Based Shading Models

- Phong model produces pretty pictures
- Cons: empirical fudge (*cosⁿφ*), plastic look
- First physically-based models were based on microfacet Theory
- Classic: Cook-Torrance shading model (TOGS 1982)

Cook-Torrance Shading Model

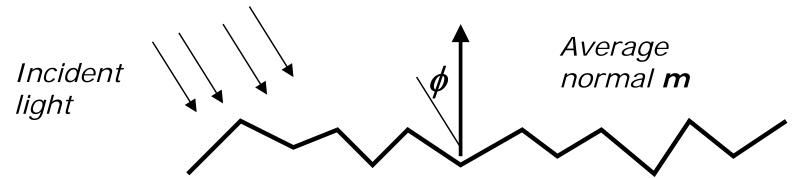
- Similar ambient and diffuse terms to Phong
- More complex specular component than (*cosⁿφ*)
- Define new specular term

$$\cos^n \phi \to \frac{F(\phi, \eta)DG}{(\mathbf{m} \cdot \mathbf{v})}$$

- where
 - D Distribution term
 - G Geometric term
 - F Fresnel term
- Let's explain each term

Distribution Term, D

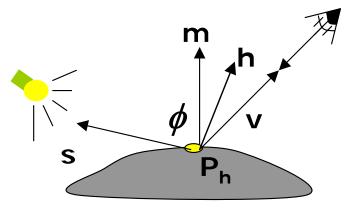
Surface composed of microfacets: small V-shaped grooves



- Only grooves facing mirror directions reflect light
- D term expresses groove directions
- Note: several grooves occur at each hit point
- Technically, D expresses direction of aggregates (distribution)
- E.g. half of grooves at hit point face 30 degrees, etc

Cook-Torrance Shading Model

- Can define mirror direction using Blinn's halfway vector, h = s + v
- Only microfacets with V normal pointing in h direction contributes



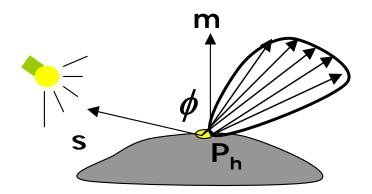
- Define angle δ as deviation of **h** from surface normal
- $D(\delta)$ is fraction of microfacets facing angle δ
- Can actually plug old Phong cosine (cosⁿφ), in as D
- More widely used is Beckmann distribution

$$D(\delta) = \frac{1}{4\mathbf{m}^2 \cos^4(\delta)} e^{-\left(\frac{\tan(\delta)}{\mathbf{m}}\right)^2}$$

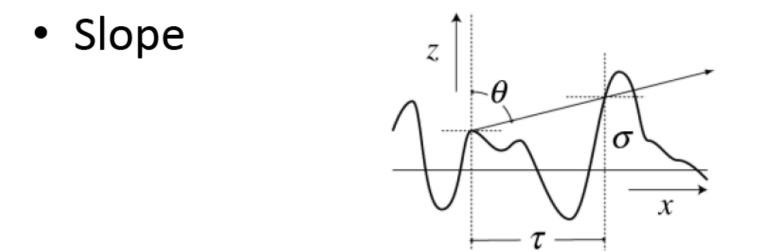
Where m expresses roughness of surface

Cook-Torrance Shading Model

- m is Root-mean-square (RMS) value of slope of V-groove
- Basically, m exresses slope of V-groove
- m = 0.2 for nearly smooth
- m = 0.6 for very rough



Microfacet Slope



Beckmann Distribution of Microfacet Slope

$$D(\alpha) = \frac{1}{\sqrt{\pi}m^2 \cos^2 \alpha} e^{-\frac{\tan^2 \alpha}{m^2}} \qquad m = \frac{2\sigma}{\tau}$$

Beckmann

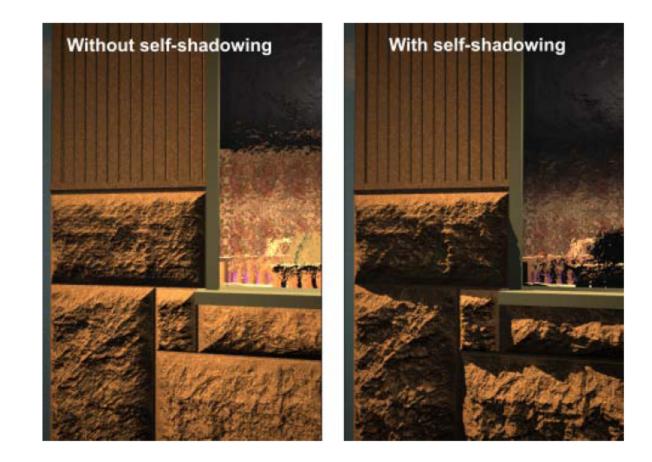
Other Microfacet Distributions

Some popular distributions

Blinn
$$D_{1}(\alpha) = \cos^{c_{1}} \alpha \qquad c_{1} = \frac{\ln 2}{\ln \cos \beta}$$
Torrance-Sparrow
$$D_{2}(\alpha) = e^{-(c_{2}\alpha)^{2}} \qquad c_{2} = \frac{\sqrt{2}}{\beta}$$
Trowbridge-Reitz
$$c_{3} = \left(\frac{\cos^{2} \beta - 1}{\cos^{2} \beta - \sqrt{2}}\right)^{\frac{1}{2}} \qquad D_{3}(\alpha) = \frac{c_{3}^{2}}{(1 - c_{3}^{2})\cos^{2} \alpha - 1}$$

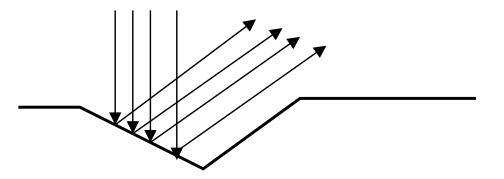
Self-Shadowing

• Geometric Term, G



Geometric Term, G

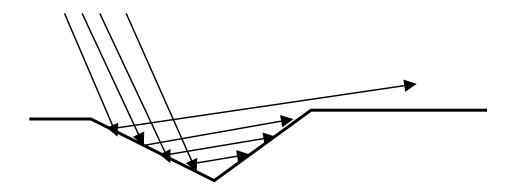
- Surface may be so rough that edges block groove interior from light
- This is known as shadowing or masking
- Geometric term G accounts for this
- Break G into 3 cases:
- G, case a: No self-shadowing



• Mathematically, G = 1

Geometric Term, G

 G, case b: No blocking of incident light, partial blocking of exitting light (masking)



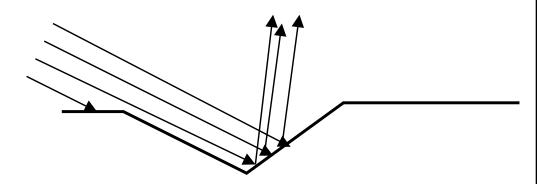
Mathematically,

$$G_m = \frac{2(\mathbf{m} \cdot \mathbf{h})(\mathbf{m} \cdot \mathbf{h})}{\mathbf{h} \cdot \mathbf{s}}$$

Geometric Term, G

- G, case c: Partial blocking of incident light, no blocking of exitting light (shadowing)
- Mathematically,

$$G_m = \frac{2(\mathbf{m} \cdot \mathbf{h})(\mathbf{m} \cdot \mathbf{h})}{\mathbf{h} \cdot \mathbf{s}}$$



• G term is minimum of 3 cases, hence

$$G=(1,G_m,G_s)$$

Fresnel Term, F

So, again recall that specular term

spec =
$$\frac{F(\phi, \eta)DG}{(\mathbf{m} \cdot \mathbf{v})}$$

- Microfacets are not perfect mirrors
- $F(\phi, \eta)$ term gives fraction of incident light reflected (angle-dependent)
- ϕ is incident angle, η is refractive index of material

$$F = \frac{1}{2} \frac{(g-c)^2}{(g+c)^2} \left\{ 1 + \left(\frac{c(g+c)-1}{c(g-c)-1} \right)^2 \right\}$$

• where $c = cos(\phi) = m.s$ and $g^2 = \eta^2 + c^2 + 1$

Fresnel Term, F

Combining expressions

spec =
$$\frac{F(\phi, \eta)DG}{(\mathbf{m} \cdot \mathbf{v})}$$

- In above expression for F, could simply use FDG
- Why divide by **m.v**?
- Accounts for why when eye is close to surface, more microfacets are seen per solid angle than when eye is close to normal

Fresnel Term, F

- Required that $k_d + k_s = 1$
- For spec, we need $F(\phi, \eta)$
- Usually, $F(0,\eta)$ is available from tables (Terloukian)
- Inserting $\phi = O$, c = 1 in expression for F

$$F = \frac{(\eta - 1)^2}{(\eta + 1)^2}$$

And

$$\eta = \frac{1 + \sqrt{F_0}}{1 - \sqrt{F_0}}$$

- So, use tabulated $F(0,\eta)$ values to calculate η
- Then use calculated η in original equation for F

Some Fresnel Values, F(0)

At incident angle 0

Material	Fresnel Value (R,G,B)
Water	0.02, 0.02, 0.02
Plastic	0.05, 0.05, 0.05
Glass	0.08, 0.08, 0.08
Diamond	0.17, 0.17, 0.17
Copper	0.95, 0.64, 0.54
Aluminum	0.91, 0.92, 0.92

Schlick approximation to get arbitrary F

 $F(\theta) = F(0) + (1 - F(0))(1 - \cos\theta)^{5}$

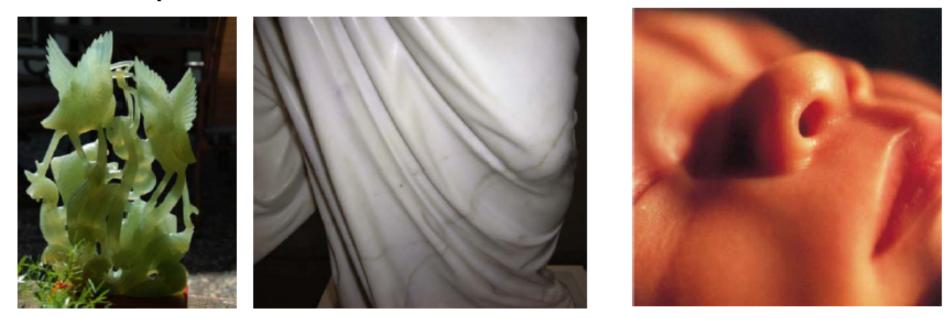
Final Words

- Oren-Nayar Lambertian not specular
- Aishikhminn-Shirley Grooves not v-shaped.
 Other Shapes
- BRDF viewer
- Microfacet generator

Subsurface Scattering in liquids and solids

Examples

κt



Jade

Marble

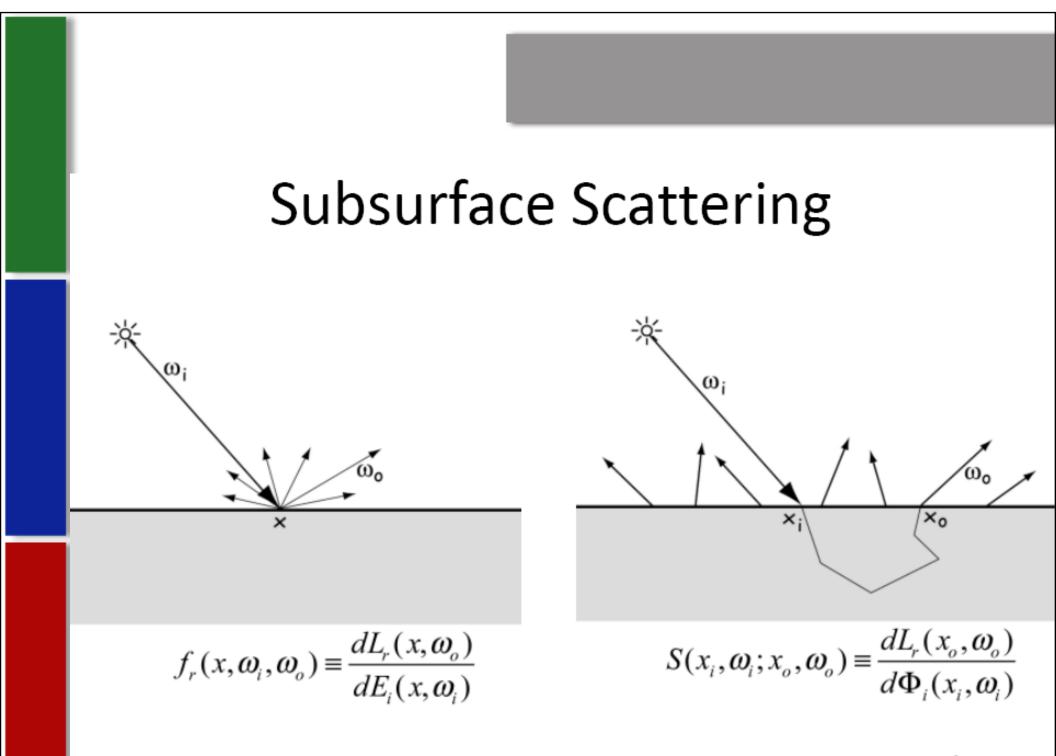
Skin

Next week: scattering in atmosphere, clouds, gases, etc

More Examples...

Hair

Milk



Reflection

Subsurface Scattering

Modeling Subsurface Scattering

- Multiple layers that reflect or transmit light
- Origin: Kubelka-Munk theory for modeling scattering of paint pigments

 $R = 1 + \frac{K}{S} - \sqrt{\frac{K}{S}} + 2\frac{K}{S}$

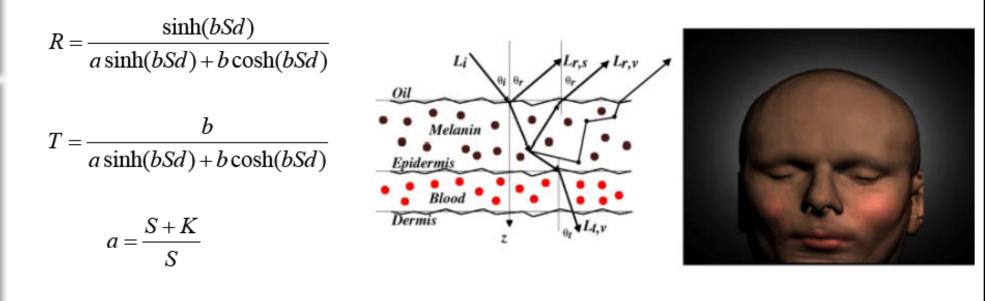
- K, fraction of light absorbed
- S, fraction of light scattered

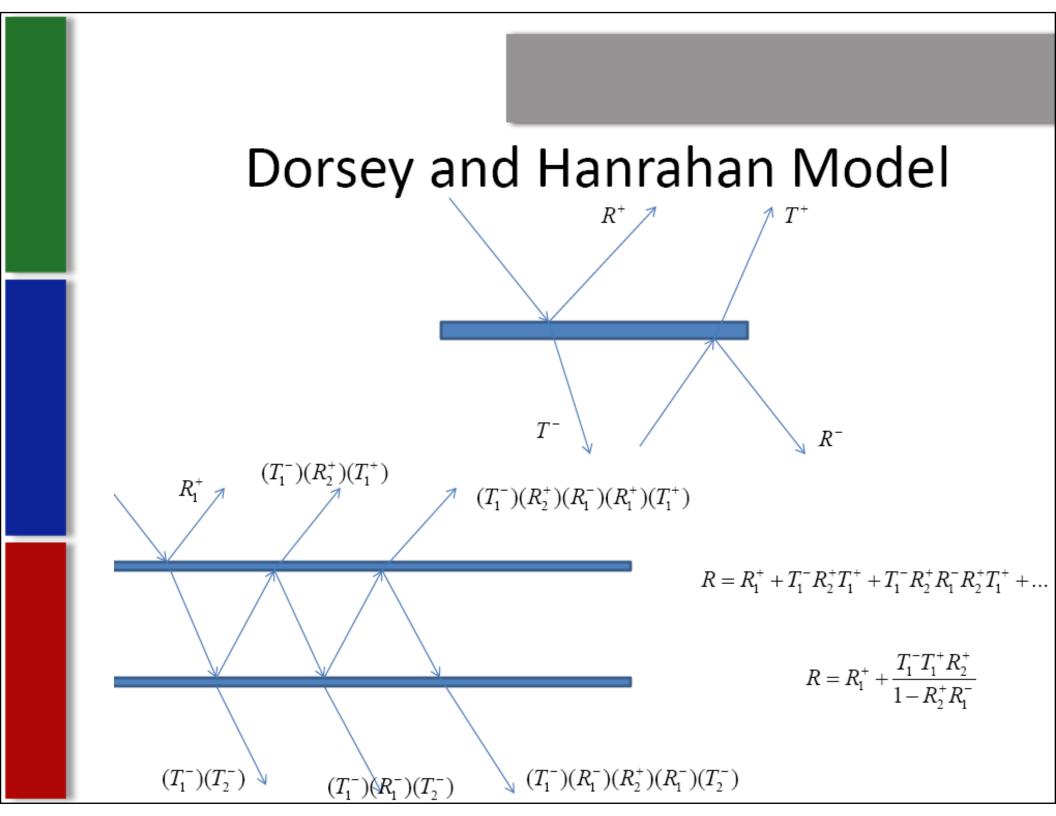
Dorsey and Hanrahan

- Kubelka Munk extended by Dorsey, Hanrahan
- Multiple layers of scattering

 $b = \sqrt{a^2 - 1}$

• Considering material of thickness d





References

- Pat Hanrahan, CS 348B slides, 2009
- Hill and Kelley, Computer Graphics using OpenGL (3rd edition)
- Matt Pharr, Greg Humphreys "Physically Based Rendering", Chapter 13
- Dorsey and Rushmeier, Modeling of Digital Materials
- Akenine-Moller, Haines and Hoffman, Real Time Rendering, 3rd edition