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Answer:

A fundamental understanding of the theory
behind how light interacts with matter is
needed in order to understand how others
are implementing and modeling light
interaction.




*  Basic terminology

* Angular Dependencies

* Notation and Direction

* Radiance and Irradiance
*  Spectral Representation
 BRDFs

« Reflectance
 Lambertian BRDF

* The Rendering Equation
* Monte Carlo Integration




» Radiometric Quantities

. Radiant Energy Q : The basic unit of
electromagnetic energy. Measured in joules

(units: J)

. Radiant Flux @ : The amount of radiant energy
passing through a surface or region of space per
second. d@Q/dt. (units: J * s1)




. Radliant flux density : The radiant flux per
differential area. d®/dA (units : W m2)

. Irradiance E: The flux density that arrives at a
surface. Same units as Radiant flux density... W
m-2

. Radiant exitance M: The flux density that leaves a
surface. Also, same units as Radiant flux density...
W m2

. Radiant Intensity I: Flux density per unit solid
angle : d®/dw. Radiant energy in time and
direction. (units : W m2s).




. Radiance L: The flux per unit projected per unit
solid angle. Units are the same as Radiant
intensity (units : W m=2s?t), BUT coming from a
specific direction ...
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Specific to raytracing, a few properties stand
out:

* Constant along rays in empty space

* (Can be defined at any point in space (eye
point)

*  For points on a surface it makes no
difference whether flux is directed towards
or away from the surface.
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Irradiance Angular dependence

dA~ =cos O dA




p : Surface point where light is reflected
@; : Incoming direction
@, : Reflected direction
(0,,¢,) : Incoming coordinate angles
(0,.¢,) : Reflected coordinate angles

n : Normal to surface




* Since ...

dA" =cos O dA

Substituting for dA in ... " dA " do

I d° @
Yields " cos @dAdw




* Using the following two equations ....

2
4o L do

E_d7  cos OdAdw

.. We can relate /ncident radiance and
irradiance :

dE (p,0,)=L(p,w,)cosO,dw,

dE (p.w)rradiance in a cone with differential solid angle
L,(p,®,) incident radiance at p




* By integrating dE over the different solid
angle, the irradiance from the solid angle ¢,
can be obtained:

Ei(p):f L(p,do;)cos O,dw,
Q.




Spectral... dependent on wavelength
For Radiance :

A=o0

L(p, )= f L(p, w,A)dA

A=0

Ray tracing primarily uses red, green, and
blue (RGB) components, instead of the
entire visible spectrum.



« Different materials reflect the visible light
spectrum differently...
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Figure 1. 8% sEHemispherical Spectral Reflectance Factor for SIRS-99_020.




 Bidirection Reflectance Distribution
Function (f)

— Provides a means to describe how light is
reflected at a surface point p , it relates
reflectance in », direction to irradiance in o,
direction




Due to linearity of materials... irradiance and
radiance are proportional :

dLO(p , a)o)ochi(p , a)i)

The constant of proportionality is denoted with f:
dL(p,w,)=f(p o, 0,)dE(p, o)

In terms of the incoming radiance, L :
dL (p,ow,)=f (p,w,,0, )L(p,dw,)cos®.dw,

Finally, solving for f:

dL (p,w,)
L(p,dw,)cos® dw,

fAp.0,0,)=



The Reflected Radiance in the «. direction from
irradiance in a solid angle @, is obtained by
integrating over £2; :

La(p , wo):f fr(p , s a)o)Li(p’ da)i)cos O,dw,
2

The total reflected Radiance in the «. direction is
computer by integrating over the hemisphere
about p... the reflectance equation :

L(p.w)=] f.p o,0,)L(p, do)cosO,do,
21



BRDF properties:
—  Reciprocity. (swap omegas)

fpow,0)=f(p o, o)

—  Linearity. Add BRDFs..




* Defined as the ratio of reflected flux to
incident flux. (reflected power versus
incident power)

. Radiant flux on a differential surface element :

d &,=dA f L(p,dw;)cos®.dw,
Q

 Likewise , the reflected flux is:

d b =dA f L(p,dw, cos® dw,
Q,




 We can determine the reflectance (p) by
substituting this equation:

Lip,o)=] f.p o,0,)L(p,do,)cos®,do,
Q).

Into : dQPO:dAf ffr(]?,a),-,a)o)L,-(p,da),-)cos@ida)icos@oda)o
Q, 0,

to get the reflectance equation where 2 (P, 2, Q)= d qso

fffr (p,ow,,0,)L(p,dw,)cos®, dw,cos® do,
Q, 0

f L(p,dw,;)cos®,dw,

Q




* Conservation of Energy... some materials
absorb light and then re-radiated
(blacktop), therefore the total reflectance
over a whole hemisphere must be < 1.

p(p,2m ,2m)<l




A simple BRDF where incidence radiance is
scattered in all directions, a.k.a.
Lambertian reflection

A I
incident light ™, 7 i

perfect diffuze reflection

Since reflection is a perfect diffuse,
reflected direction is no longer a factor:

L(p o)=L, ,(p)



Our reflectance function from an earlier
slide becomes:

Lr,d(p):f fp, o, o) L(p,dw,;)cosO,do,
Q,

Since the BRDF no longer depends on the
omegas, we can pull it from the integral:

Lr,d(p):fr(p)f Li(p: da)l.)cos O,dw,
Q,

Finally, solving for the BRDF:

_Lr,d<p)
fAp)= E.(p)




. Now, express the BRDF in terms of the perfect
diffuse reflectance into the full hemisphere :

d®,=dAL,(p) | cos®,dw,=dAL,(p)m
271
d®,=dA | L,(p,dw,)cos O,dw,=dA E,(p)
Q

. Now get the reflectance... (only dependent on

pP) : d®, dAL.(p)m
p(p)=d¢i= IAE () =f.(p)m




~

Figure 7.17. Example BRDFs. The solid green line coming from the right of each fig-
ure is the incoming light direction, and the dashed green and white line is the ideal
reflection direction. In the top row, the left figure shows a Lambertian BRDF (a simple
hemisphere). The middle figure shows Blinn-Fhong highlighting added to the Lamber-
tian term. The right figure shows the Cook-Torrance BRDF [192, 1270]. Note how the
specular highlight is not strongest in the reflection direction. In the bottom row, the
left figure shows a close-up of Ward’s anisotropic model. In this case, the effect is to tilt
the specular lobe. The middle figure shows the Hapke/Lommel-Seeliger “lunar surface”
BRDF [501], which has strong retroreflection. The right figure shows Lommel-Seeliger
scattering, in which dusty surfaces scatter light toward grazing angles. (Images courtesy
of Szymon Rusinkiewicz, from his *bv”™ BRDF browser.)




 Expression of the radiance equilibrium in a
scene.
* Two Forms...

— Hemisphere
— Area




* Hemisphere form

— Already have a reflection equation:

Lo(p’a)o):f fr(p’wi’wo)l’i(p’da)i)cos 0,dw,
21

— Now add the concept of a surface light source
(emissive surface)

L(p w,

— Intuitively, it follows that the total radiative
energy is the sum of the emitted and
reflected radiance:

L()(p’a)o):Le(p’a)o)_'_ f fr(p’a)i’a)o)l‘i(p’da)i) cos ©,dw,

21




» Chicken egg problem.... For points (p,p’) on two
facing surfaces the exitance radiance from surface
p depends on the incoming radiance from surface
p'... which depends of the incidence radiance from
surface p ... Solution:

— Trace ray from p to find incident radiance
— Find nearest hit point along that ray p’
— Incident from p and exitance from p' are equal
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* Use the ray-casting operator 'r':
L(p.w)=L(p.o,)+ | f,(p.0,0,)L,r(p. o, —o)cosO, do,

2t

* Can be ugly to solve (p. 233 and Ch 24-26)
— Lo in both sides, and recursive




* Area form:

— Alternative to hemisphere

— Expressed as an integral over all surfaces in a
scene using sample points

— Same concept of p and p’in hemisphere

— Only matters when p and p'are in direct line
of sight. Idea of a Visibility function arises:

1 1f pand p'can seeeach other
AV (p,p')= ,
(p.p") 0 1f pand p'cannot see eachother




* To use area form, must recast solid angle

_cos®'dA

dow,= >
lp—p'l

» Ultimately, we're left with the area form of

the rendering equation:

— V term is the visibility function
— G is the geometry term c(p.p)=

cos ©,cos O’

lp—p'If

L(p w,)=L(p,o)+[ f(p.o,0)L(p —0)V(p, p)G(p, p')dA

A




* Why is there no visibility function in the
hemisphere form?




* The rendering equation can't be solved
exactly, so we need to compute
numerically. How?

— Use Monte Carlo Integration:

* Pick random values over some interval of
interest

« Evaluate function at each of these random
values

 Estimated Solution will be the sum of each of
the evaluated solutions divided by the number
of random points

 Estimate gets better as more evaluation points
are added




* Consider the solution for this definite
integral:




* By picking values between a and b and
evaluating, we can start to approximate
the solution to the definite integral, this
leads to the Monte Carlo estimator:

(=222 r(x)

n

(=23 f(x)
h




*  Previous method works adequately, but
what if there are some parts of the
function contribute most of the area?

— Use Importance Sampling




» We'd like to get more samples under the
areas where f(x) have the greatest values.
Rather than use a uniform sampling, use
probability density function (pdf), p(x).




Monte Carlo integration
(cont)
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