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Question : Why ??

Answer: 
A fundamental understanding of the theory 

behind how light interacts with matter is 
needed in order to understand how others 
are implementing and modeling light 
interaction.



Agenda Outline

• Basic terminology
• Angular Dependencies 
• Notation and Direction
• Radiance and Irradiance
• Spectral Representation
• BRDFs
• Reflectance
• Lambertian BRDF
• The Rendering Equation
• Monte Carlo Integration



Background Terminology

• Radiometric Quantities

• Radiant Energy Q : The basic unit of 
electromagnetic energy. Measured in joules 
(units: J)

•  Radiant Flux Ф :  The amount of radiant energy 
passing through a surface or region of space per 
second. dQ/dt. (units: J * s-1)



Background Terminology 
Cont.

• Radiant flux density : The radiant flux per 
differential area.  dФ/dA (units : W m-2 )

• Irradiance E: The flux density that arrives at a 
surface. Same units as Radiant flux density... W 
m-2

• Radiant exitance M: The flux density that leaves a 
surface. Also, same units as Radiant flux density... 
W m-2

• Radiant Intensity I: Flux density per unit solid 
angle : dФ/dω. Radiant energy in time and 
direction. (units : W m-2 s-1).



Background Terminology 
Cont.

• Radiance L:  The flux per unit projected per unit 
solid angle. Units are the same as Radiant 
intensity (units : W m-2 s-1), BUT coming from a 
specific direction … 

L= d 2Ф
dA dω

• Q: Why d^2 ???Q: Why d^2 ???



Background Terminology 
Cont.

Specific to raytracing, a few properties stand 
out:

• Constant along rays in empty space
• Can be defined at any point in space (eye 

point)
• For points on a surface it makes no 

difference whether flux is directed towards 
or away from the surface.



Angular Dependence of 
Irradiance

• Irradiance Angular dependence 

dA⊥=cosdA



Notation and Direction

• p : Surface point where light is reflected
•      : Incoming direction
•      : Reflected direction
•            : Incoming coordinate angles
•            : Reflected coordinate angles  
• n : Normal to surface              
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Notation and Direction

• Since …

Substituting for dA in … 

Yields …

 

dA⊥=cosdA

L= d 2Ф
dA⊥ dω

L= d 2Ф
cosdA dω



Radiance and Irradiance 
(cont)

• Using the following two equations ....

… we can relate incident radiance and 
irradiance :

  : irradiance in a cone with differential solid angle 
  : incident radiance at p 

E=d 
dA

L= d 2Ф
cosdA dω

dE i p ,ω i=Li p ,ω icosi dω i
dE i p ,ω i

Li p ,ω i



Radiance and Irradiance 
(cont)

• By integrating dE over the different solid 
angle, the irradiance from the solid angle 
can be obtained: 

i

E i p =∫ Li p , dωicosidω i
i



Spectral Representation

• Spectral... dependent on wavelength 
• For Radiance :

•  Ray tracing primarily uses red, green, and 
blue (RGB) components, instead of the 
entire visible spectrum.  

L p ,ωi=∫
=0

=∞

L p ,ωi ,d 



Spectral 
Representation(cont)

• Different materials reflect the visible light 
spectrum differently...

• Commercially available high reflectance 
material... “Spectralon” (notice 350 - 750nm)



BRDFs

• Bidirection Reflectance Distribution 
Function (f )
– Provides a means to describe how light is 

reflected at a surface point p , it relates 
reflectance in     direction to irradiance in 
direction 

ωoωi



BRDFs (cont)

• Due to linearity of materials... irradiance and 
radiance are proportional :

• The constant of proportionality is denoted with f :

• In terms of the incoming radiance, L :

• Finally, solving for f : 

dL o p ,ωo∝dE i  p ,ωi

dL o p ,ωo= f r p ,ωi ,ωodE i p ,ω i

dL o p ,ωo= f r p ,ωi ,ωoLi p , dωicosidωi

f r p ,ω i , ωo=
dL o p ,ωo

Li p , dωicosi dωi



BRDFs (cont)

• The Reflected Radiance in the     direction  from 
irradiance in a solid angle      is  obtained by 
integrating over     : 

• The total reflected Radiance in the     direction is 
computer by integrating over the hemisphere 
about p... the reflectance equation :

ωo
i

i

Lo p ,ωo=∫
i

f r p ,ω i , ωoLi  p , dωicosidω i

ωo

Lo p ,ωo=∫
2+

f r p ,ωi , ωoLi p , dωicosidω i



BRDFs (cont)

• BRDF properties:
– Reciprocity: (swap omegas)

– Linearity: Add BRDFs.. 

f r p ,ω i , ω o= f r p ,ω o , ωi



Reflectance

• Defined as the ratio of reflected flux to 
incident flux. (reflected power versus 
incident power)

• Radiant flux on a differential surface element :

• Likewise , the reflected flux is:

d i=dA∫
i

Li  p , dωicosidω i

d o=dA∫
 o

Lo p , dωocosodωo



Reflectance (cont)

• We can determine the reflectance (ρ) by 
substituting this equation:

Into :

to get the reflectance equation where 

= 

Lo p ,ωo=∫
i

f r p ,ωi ,ωoLi  p ,dωicosidωi

d o=dA∫
 o

∫
 i

f r p ,ω i , ωo Li p , dω icosi dωi cosodωo

 p ,i ,o=
d o
d i

∫
o

∫
i

f r  p ,ωi , ωoLi p , dωicosi dωi cosodωo

∫
i

Li p , dωicosi dωi



Reflectance (cont)

• Conservation of Energy... some materials 
absorb light and then re-radiated 
(blacktop), therefore the total reflectance 
over a whole hemisphere must be < 1.

 p ,2+ , 2+1



Perfect Diffuse BRDF

• A simple BRDF where incidence radiance is 
scattered in all directions, a.k.a. 
Lambertian reflection 

• Since reflection is a perfect diffuse, 
reflected direction is no longer a factor:

Lo p ,ωo=Lr ,d  p 



Perfect Diffuse BRDF

• Our reflectance function from an earlier 
slide becomes:

• Since the BRDF no longer depends on the 
omegas, we can pull it from the integral:

• Finally, solving for the BRDF: 

Lr , d  p =∫
 i

f r p ,ωi ,ω oLi p , dωicosidωi

Lr , d  p = f r p ∫
 i

Li p , dωicosi dω i

f r p =
L r , d  p 
E i  p 



Perfect Diffuse BRDF

• Now, express the BRDF in terms of the perfect 
diffuse reflectance into the full hemisphere :

• Now get the reflectance... (only dependent on 
p) :

d i=dA∫
i

Li  p , dωicosidω i=dA Ei  p

d o=dALr p ∫
2+

cosodωo=dALr p

 p=
do

di
=
dALr p 
dA Ei  p

= f r  p



BRDF examples....



The Rendering Equation

• Expression of the radiance equilibrium in a 
scene.

• Two Forms...
– Hemisphere
– Area



The rendering 
equation(cont)

•  Hemisphere form
– Already have a reflection equation:

–  Now add the concept of a surface light source 
(emissive surface)

– Intuitively, it follows that the total radiative 
energy is the sum of the emitted and 
reflected radiance:

Lo p ,ωo=∫
2+

f r p ,ωi , ωoLi p , dωicosidω i

Le  p ,ωo

Lo p ,ωo=Le  p ,ωo∫
2+

f r p ,ωi ,ωoLi  p ,dωicosidωi



The rendering 
equation(cont)

•  Chicken egg problem.... For points (p,p') on two 
facing surfaces the exitance radiance from surface 
p depends on the incoming radiance from surface 
p'... which depends of the incidence radiance from 
surface p … Solution:
– Trace ray from p to find incident radiance
– Find nearest hit point along that ray p'
– Incident from p and exitance from p' are equal



The rendering 
equation(cont)

• Use the ray-casting operator 'r':

•  Can be ugly to solve (p. 233 and Ch 24-26)
– Lo in both sides, and recursive

Lo p ,ωo=Le  p ,ωo∫
2+

f r p ,ωi ,ωoLorc  p ,ωi ,−ωicosidωi



The rendering 
equation(cont)

• Area form:
–  Alternative to hemisphere
–  Expressed as an integral over all surfaces in a 

scene using sample points
– Same concept of p and p' in hemisphere
– Only matters when p and p' are in direct line 

of sight. Idea of a Visibility function arises:

A:V  p , p ' ={1 if pand p ' can seeeachother
0 if pand p ' cannot see eachother



The rendering 
equation(cont)

• To use area form, must recast solid angle 

• Ultimately, we're left with the area form of 
the rendering equation:
– V term is the visibility function
– G is the geometry term

dωi=
cos ' dA
∥p−p '∥2

Lo p ,ωo=Le  p ,ωo∫
A
f r p ,ωi ,ωo Lo p ' ,−ωiV  p , p ' G  p , p' dA

G  p , p ' =
cosi cos '

∥p−p '∥2



The rendering 
equation(cont)

• Why is there no visibility function in the 
hemisphere form?



Monte Carlo integration

• The rendering equation can't be solved 
exactly, so we need to compute 
numerically. How?

– Use Monte Carlo Integration:
• Pick random values over some interval of 

interest 
• Evaluate function at each of these random 

values
• Estimated Solution will be the sum of each of 

the evaluated solutions divided by the number 
of random points  

• Estimate gets better as more evaluation points 
are added 



Monte Carlo integration 
(cont)

• Consider the solution for this definite 
integral: 

I=∫
a

b

f  xdx



Monte Carlo integration 
(cont)

• By picking values between a and b and 
evaluating, we can start to approximate 
the solution to the definite integral, this 
leads to the Monte Carlo estimator: 

f x =1
n∑ f x j

〈 I 〉=b−a
n ∑ f x j



Monte Carlo integration 
(cont)

• Previous method works adequately, but 
what if there are some parts of the 
function contribute most of the area?
– Use Importance Sampling



Monte Carlo integration 
(cont)

• We'd like to get more samples under the 
areas where f(x) have the greatest values. 
Rather than use a uniform sampling, use 
probability density function (pdf), p(x). 



Monte Carlo integration 
(cont)

• Monte Carlo in action..... (regular-60 vs importance-60)
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