CS 563 Advanced Topics in Computer Graphics Disc and Hemisphere Sampling

by Joe Miller

Mapping Samples to a Disc

Until now sampling has been done on the unit square

Now we'd like to find samples in a circular area

Application of Disc Sampling

- When is disc sampling used?
 - Sampling a circular lens
 - Shading with disc lights

Rejection Sampling

 Simplest approach is to use the same techniques for unit square and reject the samples that are not in the circle

Rejection Sampling

- Advantages
 - Simple, simple, simple
- Disadvantages
 - Breaks uniformity of some sampling techniques
 - N-rook, multi-jittered or Hammersley
 - Wastes time looking at many samples that are simply dropped
 - 2D uniform sampling loses ~21% of the samples
- Alternative is to map sample locations from the unit square to a unit circle

Polar Mapping

- One option is to use a polar mapping technique
- To do this convert unit square coordinates to polar coordinates: (x_s,y_s) => (r,□)
 - $\mathbf{r} = \Box \mathbf{x}_{s}$
 - □= 2 y_s
- Convert polar coordinates to sample coordinates
 - x = r * cos (□)
 - y = r * sin (□)

Polar Mapping

Example using 64 points and 256 points

Polar Mapping

- One problem with polar mapping is that the many parts of the disc are under-sampled
 - Doesn't maintain the minimum distance between points
- Another problem is the mapping grossly distorts the original point
- So....

- Another approach is to use a concentric mapping of the unit square to a unit circle
- Divide the unit square and circle into 4 quadrants along the 45° lines

Concentric Mapping

 Here's a table of the radius and angle for each of the quadrants

Quadrant	Angular Range	(x,y) Range	Map Equations
1	315° < □<= 45°	x > -y x > y	r = x □ = □/4 * y/x
2	45° < □<= 135°	x > -y x < y	r = y □ = □/4 * (2 - x/y)
3	135° < □<= 225°	x < y x < -y	r = -x □ = □/4 * (4+y/x)
4	225° < □<= 315°	x > y x < -y	r = -y □ = □/4 * (6 - x/y)

- Calculate x,y same as before
 - x = r * cos (□)

Concentric Mapping

 Here's an example of how the unit square maps back to the unit circle

Concentric Mapping

Here's the projection of 256 points

Mapping Samples to a Hemisphere

- The next challenge is to get samples on a unit hemisphere
- Use the same concept as disc mapping of using the algorithms derived for a unit square and remapping them to the unit hemisphere

256 regular samples mapped to a hemisphere

Hemisphere Mapping Algorithm

In this case we'll define

 a hemisphere in
 spherical coordinates
 (川口) and then revert
 that back to a cartesian
 3D point

- The equation for (III) where (x_s,y_s) is a position in the unit square with range [0,1]
 - □= 2ξ _σ
 - $\cos^{-1}[(1-y_s)^{1/(e+1)}]$
- And then as a point in 3D space
 - $\mathbf{p} = \sin \Box \cos \Box \mathbf{u} + \sin \Box \sin \Box \mathbf{v} + \cos \Box \mathbf{w}$

Hemisphere Mapping Algorithm

- □= 2ξ□_σ
 - As x_s increases from $0 \rightarrow 1$ then \Box goes from $0^\circ \rightarrow 360^\circ$
- $\cos^{-1}[(1-y_s)^{1/(e+1)}]$
 - Ignore the e for right now
 - As y_s increases from $0 \rightarrow 1$ then \Box goes from $0^{\circ} \rightarrow 90^{\circ}$
- $\mathbf{p} = \sin \Box \cos \Box \mathbf{u} + \sin \Box \sin \Box \mathbf{v} + \cos \Box \mathbf{w}$
 - General equation for spherical coordinates

Cosine Distribution

- What about that \underline{e} in $\Box = \cos^{-1}[(1-y_s)^{1/(e+1)}]$
- The book describes this as the cosine distribution function
 - As general function $d = \cos^{e}(\Box)$

- So what does it do for us?
- The distribution allows the system to tighten the sample distribution
 - As <u>e</u> gets larger the sample distribution gets tighter
 - e = 0 is a the unit hemisphere radius of 1
 - e = 1 is a hemisphere is a radius of .5 (shifted)

Applications of Hemisphere Mapping

 Here are a few places where hemisphere mapping is used in ray tracing

Glossy Reflection (chapter 25) Ambient occlusion (chapter 17)

And many more ...

References

- Suffern, Kevin (2007). Ray Tracing from the Ground Up. pp. 119-131 Wellesley, MA: A K Peters, Ltd.
- Shirley, P. and K. Chiu (1997). A low distortion map between disk and square. *journal of graphics tools*, 2(3), 45-52