CS 563 Advanced Topics in Computer Graphics
 Disc and Hemisphere Sampling

by Joe Miller

Mapping Samples to a Disc

- Until now sampling has been done on the unit square

- Now we'd like to find samples in a circular area

Application of Disc Sampling

- When is disc sampling used?
- Sampling a circular lens
- Shading with disc lights

Rejection Sampling

- Simplest approach is to use the same techniques for unit square and reject the samples that are not in the circle

Rejection Sampling

- Advantages
- Simple, simple, simple
- Disadvantages
- Breaks uniformity of some sampling techniques
- N-rook, multi-jittered or Hammersley
- Wastes time looking at many samples that are simply dropped
- 2D uniform sampling loses $\sim 21 \%$ of the samples
- Alternative is to map sample locations from the unit square to a unit circle

Polar Mapping

- One option is to use a polar mapping technique
- To do this convert unit square coordinates to polar coordinates: $\left(x_{s}, y_{s}\right)=>(r, \square)$
- $\mathrm{r}=\mathbb{W}_{\mathrm{s}}$
- $\square=2 y_{s}$
- Convert polar coordinates to sample coordinates
- $x=r^{*} \cos (\square)$
- $y=r^{*} \sin (\square)$

Polar Mapping

- Example using 64 points and 256 points

Polar Mapping

- One problem with polar mapping is that the many parts of the disc are under-sampled
- Doesn't maintain the minimum distance between points
- Another problem is the mapping grossly distorts the original point
- So....

Concentric Mapping

- Another approach is to use a concentric mapping of the unit square to a unit circle
- Divide the unit square and circle into 4 quadrants along the 45° lines
- Set r to x or y and ㅁo a ratio of x and y based on the quadrant

Concentric Mapping

- Here's a table of the radius and angle for each of the quadrants

Quadrant	Angular Range	(x, y) Range	Map Equations
1	$315^{\circ}<\square<=45^{\circ}$	$x>-y$ $x>y$	$r=x$ $\square=\square / 4 * y / x$
2	$45^{\circ}<\square<=135^{\circ}$	$x>-y$ $x<y$	$r=y$ $\square=\square / 4 *(2-x / y)$
3	$135^{\circ}<\square<=225^{\circ}$	$x<y$ $x<-y$	$r=-x$ $\square=\square / 4$
4	$225^{\circ}<\square<=315^{\circ}$	$x>y / x)$ $x<y$ $x<-y$	$r=-y$ $\square=\square / 4 *(6-x / y)$

- Calculate x, y same as before
- $x=r * \cos (\square)$
- $y=r^{*} \sin (\square)$

Concentric Mapping

- Here's an example of how the unit square maps back to the unit circle
- Unit Circle

Concentric Mapping

- Here's the projection of 256 points

| \times |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \times |
| \times |
| \times |
| \times |
| \times |
| \times |
| \times |
| \times |
| \times |
| \times |
\times	x	\times	\times						
\times	\times	\times	\times	\times	x	\times			
\times	\times	\times	\times	\times	x	\times	x	x	\times
\times	x	\times	x						
\times									

Mapping Samples to a Hemisphere

- The next challenge is to get samples on a unit hemisphere
- Use the same concept as disc mapping of using the algorithms derived for a unit square and remapping them to the unit hemisphere

256 regular samples mapped to a hemisphere

Hemisphere Mapping Algorithm

- In this case we'll define a hemisphere in spherical coordinates (니) and then revert that back to a cartesian 3D point
- The equation for (, 四) where $\left(x_{s^{\prime}} y_{s}\right)$ is a position in the unit square with range [0,1]

$$
\begin{aligned}
& \text { - } \square=2 \xi{ }_{\sigma}{ }_{\sigma}{ }^{1 / 2} \cos ^{-1}\left[\left(1-y_{s}\right)^{1 /(e+1)}\right]
\end{aligned}
$$

- And then as a point in 3D space

$$
\text { - } \mathbf{p}=\sin \square \cos \square \mathbf{u}+\sin \square \sin \square \mathbf{v}+\cos \square \mathbf{w}
$$

Hemisphere Mapping Algorithm

- $\square=2 \xi_{。}$
- As x_{s} increases from $0 \rightarrow 1$ then \square goes from $0^{\circ} \rightarrow 360^{\circ}$

$$
=\cos ^{-1}\left[\left(1-y_{s}\right)^{1 /(e+1)}\right]
$$

- Ignore the e for right now
- As y_{s} increases from $0 \rightarrow 1$ then \square goes from $0^{\circ} \rightarrow 90^{\circ}$
- $\mathbf{p}=\sin \square \cos \square \mathbf{u}+\sin \square \sin \square \mathbf{v}+\cos \square \mathbf{w}$
- General equation for spherical coordinates

Cosine Distribution

- What about that \underline{e} in $\square=\cos ^{-1}\left[\left(1-y_{s}\right)^{1 /(e+1)}\right]$
- The book describes this as the cosine distribution function
- As general function $\mathrm{d}=\cos ^{e}(\square)$

Cosine Distribution

- So what does it do for us?
- The distribution allows the system to tighten the sample distribution
- As e gets larger the sample distribution gets tighter
- $\mathrm{e}=0$ is a the unit hemisphere - radius of 1
- $\mathrm{e}=1$ is a hemisphere is a radius of .5 (shifted)

$$
e=1000
$$

$e=512$
$e=64$

Applications of Hemisphere Mapping

- Here are a few places where hemisphere mapping is used in ray tracing

Ambient occlusion (chapter 17)

Glossy Reflection
(chapter 25)

And many more ...

References

- Suffern, Kevin (2007). Ray Tracing from the Ground Up. pp. 119-131 Wellesley, MA: A K Peters, Ltd.
- Shirley, P. and K. Chiu (1997). A low distortion map between disk and square. journal of graphics tools, 2(3), 45-52

