Sampling Theory Image Reconstruction

Timothy Walsh

Fourier Analysis

- Fourier Transform defines a spatial function in the *frequency domain*
 - $F(?) = {}_{-8} ?^8 f(x) e^{-i2p?x} dx$
- Fourier Synthesis defines a frequency function in the *spatial domain*

•
$$f(x) = {}_{-8}?^8 F(?) e^{-i2p?x} d?$$

 Fourier Analysis reveals error from sampling and reconstruction

Ideal Sampling

- Sampling requires equal spacing
 - Shah function is an infinite sum of equally spaced delta functions
 - $III_T(x) = T_{i=-8}?^{8}d(x-iT)$
 - T is the period or sampling rate
- Convolution is defined as f(x) c g(x) = 8?⁸ f(x´)g(x - x´)dx´
- Reconstruction is done by $(III_T(x) f(x)) c r(x)$
 - $f'(x) = T_{i=-8}?^{8} f(iT)r(x iT)$

Ideal Sampling

- Frequency space representation of f(x) provides better information
- Need to transform the Shah function to frequency domain

• $III_{1/T}(?) = 1/T_{i=-8}?^{8}d(? - i/T)$

- F(?) c III_{1/T}(?) gives representation of samples
- Reconstruction similar to spatial domain

Aliasing

- Undersampling causes overlapping of F(?)
- Reconstruction causes aliases
- Nyquist frequency tells us sampling frequency
- What about non-band limited signals?

Antialiasing

- Nonuniform Sampling
 - Reduces impact of aliasing by varying spacing of samples
 - Turns aliasing artifacts in noise
- Adaptive Sampling
 - More samples in higher frequencies
 - Sample adjacent values searching for significant changes
- Prefiltering
 - Blur out high frequencies

Aliasing in Rendering

- Geometry creates a step function
 - Sinc filter causes oscillations
- Small objects may flicker
- Textures and materials
 - Shading

References

 Physically Based Rendering: From Theory to Implementation; Pharr and Humphreys; 2004; pp 280-302