CS 563 Advanced Topics in Computer Graphics *Color and Radiometry*

by Robert W Martin

What Is Color?

- Human perception of electromagnetic spectrum
- Human-visible region is ~380nm 740nm range
- Different wavelengths → different colors

The Importance of Color

- Driving force behind rendering
- Renders are very boring without color

No Color...

• Photorealism \rightarrow accurate color reproduction

... or Color?

Representing Colors

- RGB Color \rightarrow additive color mixing
- CMYK Color \rightarrow subtractive color mixing
- HSV Color \rightarrow used often in art, more natural
- HSL Color → differentiates 'brightness' from 'lightness'

Color in Nature

- Color propagation through space
 - Photons zip through space
 - Bounce off of things
 - Energy \rightarrow wavelength, frequency
- Color-space encoding vs. EM radiation
- GPU-based realtime rendering vs.
 Photorealistic rendering
- Color "encoded" in photons, not bits
- This allows for more realism/effects

Sources of Color

- Specular reflection
- Diffuse scattering
- Absorption
- Variances create illusion of "color"
- Emission of light
 - Heat → incandescence
 - Chemicals \rightarrow chemoluminescence
 - Absorb and Reflect → fluorescence & phosphorescence

Colors in PBRT

- Spectral Power Distribution (SPD)
 - Amount of light at each wavelength
 - Basis Function: 8 -dimensional space maps to low-dimensional space of coefficients
 - PBRT uses 3 samples of visible spectrum
- SPD colors are better for simulating "real light" → higher realism
- Convert SPD \rightarrow XYZ color for film processing

Radiometry

- Set of ideas/rules that govern light propagation
- Based on light particles, not waves
- Certain limitations due to this
- Geometric optics → light/object interaction at the macroscopic level
- Quantum mechanics \rightarrow light/atom interaction

PBRT Radiometry

- PBRT assumes Geometric optics are sufficient
- Radiometric assumptions of PBRT
 - Linearity
 - Energy Conservation
 - No polarization
 - Steady state
 - No phosphorescence/fluorescence
- Lack of certain effects due to these assumptions

Radiometric Quantities

- Radiant Flux (F)
 - Amount of energy passing through a region per unit time (joules / second, Watts)
- Irradiance (E)
 - Area density of Flux (Watts / meter²)
- Intensity (I)
 - Flux density per solid angle
- Radiance (L)
 - Flux density per unit area, per solid angle

Radiance Functions

- Incident Radiance Function
 - Distribution of arriving radiance at the point
 - L_i (p, ?)
- Extant Radiance Function
 - Distribution of departing radiance at the point
 - L_o (p, ?)
- In general, L_i (p, ?) ? L_o (p, ?)
- At a point in space with no surface & no participating media, L_i (p, ?) = L_o (p, -?)

Surface Reflection

- BRDF → Bidirectional Reflectance Distribution
 Function
- Relates the Extant Radiance Function and the Incident Radiance Function
- BTDF → Bidirectional Transmittance
 Distribution Function
- Describes distribution of transmitted light
- BSDF → Bidirectional Scattering Distribution
 Function

Surface Reflection

- $L_0(p,?_0) = ?_{S^2} f(p,?_0,?_i) L_i(p,?_i) |cos?_i| d?_i$
- Fundamental to rendering
- Transform incident distribution → extant distribution based on the surface of reflection
- Often called scattering equation

References

- "Color" Images & Material <u>http://en.wikipedia.org/wiki/Color</u>
- "Electromagnetic Radiation" Images & Material <u>http://en.wikipedia.org/wiki/Electromagnetic_radiation</u>
- "Color Spaces" Images & Material <u>http://en.wikipedia.org/wiki/Color spaces</u>
- Screenshot of "F.E.A.R" Monolith Software
- "Physically Based Rendering" Pharr, Humphreys