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Introduction

§ The integral equations generally don’t have 
analytic solutions, so we must turn to numerical 
methods.

§ Standard methods like Trapezoidal integration or 
Gaussian quadrature are not effective for high-
dimensional and discontinuous integrals.
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Simple integration



Trapezoidal rule



Randomized algorithms

§ Las Vegas v.s. Monte Carlo
§ Las Vegas: gives the right answer by using 

randomness.
§ Monte Carlo: gives the right answer on the 

average. 
§ Results depend on random numbers used
§ Statistically likely to be close to right answer



Monte Carlo integration

§ Monte Carlo integration: 
§ uses sampling to estimate the values of integrals.
§ Evaluate integrand at arbitrary points, 
§ Easy to implement and applicable to many 

problems.
§ If n samples used, converges at rate O(n-1/2).
§ To cut error by 2x, sample 4x.

§ Monte Carlo images are often noisy.



Monte Carlo methods



Basic concepts

§ X is random variable
§ Applying a function to a random variable gives 

another random variable, Y=f(X).
§ CDF (cumulative distribution function) 

§ PDF (probability density function): nonnegative, sum 
to 1

§ canonical uniform random variable ? (provided by 
standard library and easy to transform to other 
distributions)
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Discrete probability 
distributions



Continuous probability 
distributions



Expected values

§ Average value of a function f(x) over some 
distribution of values p(x) over its domain D

§ Example: cos function over [0, p ], p is 
uniform
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Variance

§ Expected deviation from the expected value
§ Fundamental concept of quantifying the error 

in Monte Carlo methods
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Properties
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Monte Carlo estimator

§ Assume that we want to 
evaluate the integral of 
f(x) over [a,b]
§ Given a uniform random 

variable Xi over [a,b], 
Monte Carlo estimator 
says that the expected 
value E[FN] of the 
estimator FN equals the 
integral
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General Monte Carlo 
estimator

§ Given a random variable X drawn from an arbitrary 
PDF p(x), then the estimator is

§ Although the converge rate of MC estimator is 
O(N1/2), slower than other integral methods, its 
converge rate is independent of the dimension, 
making it the only practical method for high 
dimensional integral 
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Choosing samples

§ How to sample an arbitrary distribution from 
a variable of uniform distribution?
§ Inversion
§ Rejection
§ Transform



Inversion method



Inversion method

§ Compute CDF P(x)

§ Compute P-1(x)

§ Obtain ?

§ Compute Xi=P-1(? )



§ Compute CDF P(x)

§ Compute P-1(x)

§ Obtain ?
§ Compute Xi=P-1(? )

Example: exponential 
distribution

, for example, Blinn’s Fresnel term



Example: power function



Rejection method



Rejection method

§ Sometimes, we can’t integrate into CDF or invert 
CDF

§ Rejection method is a fart-throwing method 
without performing the above steps 

1. Find q(x) so that p(x)<cq(x)
2. Dart throwing

a. Choose a pair (X, ? ), where X is sampled from 
q(x)

b. If (? <p(X)/cq(X)) return X
• Essentially, we pick a point 

(X, ? cq(X)). If it lies beneath 
p(X) then we are fine.



Example: sampling a unit 
sphere

void RejectionSampleDisk(float *x, float *y) {
float sx, sy;
do {
sx = 1.f -2.f * RandomFloat();
sy = 1.f -2.f * RandomFloat();

} while (sx*sx + sy*sy > 1.f)
*x = sx;  *y = sy;

}

p /4~ 78.5% good samples, gets worse in higher 
dimensions, for example, for sphere, p /6~ 52.3%



Transforming between 
distributions

§ Transform a random variable X from distribution px(x) to 
a random variable Y with distribution py(x) 

§ Y=y(X), y is one-to-one, i.e. monotonic
§ Hence, 
§ PDF: 
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Example
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§Transform: Given X with px(x) and py(y), 
try to use X to generate Y. 



Multiple dimensions



Multiple dimensions



Multidimensional 
sampling



Sampling a hemisphere

§Note: πθφθ 2/sin),( =p



Sampling a hemisphere



Sampling a hemisphere



Sampling a disk

§ Sampling disk is similar except note



Shirley’s mapping



Sampling a triangle



Sampling a triangle



Cosine weighted 
hemisphere
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weighted functions



Cosine weighted 
hemisphere

§ Malley’s method: uniformly generates points on 
the unit disk and then generates directions by 
projecting them up to the hemisphere above it.

Vector CosineSampleHemisphere(float u1,float u2){
Vector ret;
ConcentricSampleDisk(u1, u2, &ret.x, &ret.y);
ret.z = sqrtf(max(0.f,1.f - ret.x*ret.x -

ret.y*ret.y));
return ret;

}
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