CS 563 Advanced Topics in Computer Graphics

by Emmanuel Agu

PBRT Flow

- Parsing: uses lex and yacc: core/pbrtlex.I and core/pbrtparse.y
- After parsing, a scene object is created (core/scene.*)
- Rendering: Scene: : Render () is invoked.

PBRT Architecture

Geometric classes

- Chapter 2: Representation and operations for the basic math:
- points, vectors and rays.
- core/geometry.* and core/transform.*
- Chapter 3 (Shapes): Actual scene geometry such as triangles and spheres.
- Chapter 4: Acceleration structures (uniform grid, kd-tree, BVH, etc)

Coordinate system

- Points, vectors and normals:
- 3 floating-point coordinate values: x, y, z defined under a coordinate system.
- A coordinate system defined by:
- Origin + frame
- Handedness?

Vector-Point Relationship

- Diff. b/w 2 points = vector

$$
\mathbf{v}=\mathrm{Q}-\mathrm{P}
$$

- Sum of point and vector $=$ point

$$
\mathbf{v}+\mathrm{P}=\mathrm{Q}
$$

Vector Operations

- Define vectors

$$
\begin{aligned}
& \mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right) \\
& \mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)
\end{aligned}
$$

Then vector addition:

$$
\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)
$$

- and scalar, s

Vector Operations

- Scaling vector by a scalar

Note vector subtraction:

$$
\mathbf{a} s=\left(a_{1} s, a_{2} s, a_{3} s\right)
$$

$$
\mathbf{a}-\mathbf{b}
$$

$$
=\left(a_{1}+\left(-b_{1}\right), a_{2}+\left(-b_{2}\right), a_{3}+\left(-b_{3}\right)\right)
$$

Magnitude of a Vector

- Magnitude of \mathbf{a}

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2} \ldots \ldots \ldots .+a_{n}^{2}}
$$

- Normalizing a vector (unit vector)

$$
\hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\text { vector }}{\text { magnitude }}
$$

- Note magnitude of normalized vector $=1$. i.e

$$
\sqrt{a_{1}^{2}+a_{2}{ }^{2} \ldots \ldots \ldots . .+a_{n}^{2}}=1
$$

Vectors

class Vector public:
<Vector Public Methods>
float $\mathbf{x , ~ y , ~ z ; ~}$
\}
(no need to use selector and mutator)

Dot and cross product

$\operatorname{Dot}(\mathrm{v}, \mathrm{u})$

$$
v \cdot u=\|v\|\|u\| \cos \theta
$$

AbsDot(v, u)
Cross(v, u)
$\|v \times u\|=\|v\|\|u\| \sin \theta$
($v, u, v \times u$) form a
coordinate system
$(v \times u)_{x}=v_{y} u_{z}-v_{z} u_{y}$
$(v \times u)_{y}=v_{z} u_{x}-v_{x} u_{z}$
$(v \times u)_{z}=v_{x} u_{y}-v_{y} u_{z}$

Normalization

- PBRT vector methods
- Length (v) - returns length of vector, v
- LengthSquared (v) - (returns length of $v)^{2}$
- Normalize(v) returns a vector, does not normalize in place

Coordinate system from a vector

Construct a local coordinate system from a

 vector.inline void CoordinateSystem (const Vector $\& v 1$,
Vector *v2, Vector *v3)

- V1 normalized already.
-Construct v2: perpendicular vector of v1 by
- Zero out 1 component of v1
- Swap other 2 components
- V1 x v2 = v3: 3 ${ }^{\text {rd }}$ vector

Points

Points are different from vectors
explicit Vector (const Point \&p);
You have to convert a point to a vector explicitly (no accidents, know what you are doing).
区 Vector v=p;
\checkmark vector $v=$ vector (p);

Operations for points

Vector v; Point p, q, r; float a;
$q=p+v ;$
$q=p-v ;$
$\mathrm{v}=\mathrm{q}-\mathrm{p}$;
$r=p+q ;$
a*p; p/a;

(This is only for the operationa $p+\beta$ q.)
PBRT supports:
Distance (p,q);
DistanceSquared (p,q);

Normals

- A surface normal (or just normal) is a vector that is perpendicular to a surface at a particular position.

Normals

- Different than vectors sometimes
- Particularly when applying transformations.
- Implementation similar to Vector, except
- Normal cannot be added to a point
- Cannot take the cross product of two normals.
- Normal is not necessarily normalized.
- Conversion between Vector and Normal must be explicit

Rays

class Ray \{ public:

<Ray Public Methods>
Point o;
(They may be changed even if Ray is const.)

Vector d;

 mutable float mint, maxt;float time;
\};
(for motion blur)
Initialized as RAy_EPSILON to avoid self intersection.

Ray differentials

- Used to estimate projected area for a small part of a scene
- Used for texture antialiasing.
class RayDifferential : public Ray $\{$ public:
<RayDifferential Methods>
bool hasDifferentials;
Ray rx , ry ;
\};

Bounding boxes

- Avoid intersection tests inside a volume if ray doesn't hit bounding volume.
- Benefits depends on:
- Expense of testing volume vs objects inside
- Tightness of the bounding volume.
- Popular bounding volumes: sphere, axis-aligned bounding box (AABB), oriented bounding box (OBB).

Bounding boxes

Class BBox $\{$
public:
<BBox Public Methods>
Point pMin, pMax;
\}

Point p,q; BBox b; float delta;

BBox::pMin BBox(p,q) // no order for p, q Union (b, p) - Given point \& Bbox, return new larger bounding box containing point (bbox) and Bbox.

Bounding boxes

Point p,q; BBox b;
b. Expand (delta) : Expand old bounding box by factor delta

Bounding boxes

Point p, q; BBox b;

- b.Overlaps (b2) : do two bounding boxes overlap each other in x, y, z
- Returns boolean. True (overlaps) or false (does not overlap)

Bounding boxes

Point p, q; BBox b;

- b.Inside (p): Is point pinside bounding box? Returns boolean (true or false)
- Volume (b) : Returns volume of bounding volume ($x^{*} y * z$)

Bounding boxes

Point p, q; BBox b;
b. Maximumextent () (which bounding box axis is the longest; useful for building kd-tree)
b. BoundingSphere (\mathbf{c}, \mathbf{r}) (returns center and radius of bounding sphere)

- Example: generate random ray which intersects scene geometry

Transformations

class Transform \{

private:

Reference<Matrix4x4> m, mInv;
马ave space, but can't be modified after construction

- Transform stores element of 4×4 matrix
- Also computes and stores matrix inverse, mlnv (avoid repeatedly computing inverse)

Transformations

- Translate (Vector (dx,dy,dz))
- Scale (sx,sy,sz)
- RotateX (a)

$$
T(d x, d y, d z)=\left(\begin{array}{cccc}
1 & 0 & 0 & d x \\
0 & 1 & 0 & d y \\
0 & 0 & 1 & d z \\
0 & 0 & 0 & 1
\end{array}\right) \quad R_{x}(\theta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
S(s x, s y, s z)=\left(\begin{array}{cccc}
s x & 0 & 0 & 0 \\
0 & s y & 0 & 0 \\
0 & 0 & s y & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
R_{x}(\theta)^{-1}=R_{x}(\theta)^{\mathrm{T}}
$$

Question: How does x-roll matrix above differ based on axes handedness?

Rotation around an arbitrary axis

- Rotate(a, Vector(1,1,1))

Rotation around an arbitrary axis

- Rotate(a, Vector(1,1,1))

$$
\begin{gathered}
\mathbf{p}=\mathbf{a}(\mathbf{v} \cdot \mathbf{a}) \\
\mathbf{v}_{\mathbf{1}}=\mathbf{v}-\mathbf{p} \\
\mathbf{v}_{2}=\mathbf{v}_{1} \times \mathbf{a} \quad\left|\mathbf{v}_{2}\right|=\left|\mathbf{v}_{1}\right| \\
\mathbf{v}^{\prime}=p+\mathbf{v}_{1} \cos \theta+\mathbf{v}_{2} \sin \theta
\end{gathered}
$$

LookAt Transformation

- Caller specifies:
- camera (eye position),
- Look at point
- Up vector
- Want to compute 4×4 transform matrix that converts from world space to eye space

Look-at

- LookAt (Point \&pos, Point look, Vector \&up)

Applying transformations

- Point: $q=T(p), T(p, \& q)$

Point: $(p, 1)$
Vector: $(\mathrm{v}, 0)$ use homogeneous coordinates implicitly

- Vector: $u=T(v), \quad T(u, \& v)$
- Normal: treated differently than vectors because of anisotropic transformations

$$
\mathbf{n} \cdot \mathbf{t}=\mathbf{n}^{\mathrm{T}} \mathbf{t}=0
$$

$$
\left(\mathbf{n}^{\prime}\right)^{\mathrm{T}} \mathbf{t}^{\prime}=0
$$

$$
(\mathbf{S n})^{\mathrm{T}} \mathbf{M t}=0
$$

$$
\mathbf{n}^{\mathrm{T}} \mathbf{S}^{\mathrm{T}} \mathbf{M t}=0
$$

Transform should keep its inverse
For orthonormal matrix, $\mathbf{S = M}$

$$
\begin{aligned}
& \mathbf{S}^{\mathrm{T}} \mathbf{M}=\mathbf{I} \\
& \hline \mathbf{S}=\mathbf{M}^{-\mathrm{T}} \\
& \hline
\end{aligned}
$$

Applying transformations

- Transform Bbox?
- transform its 8 corners and expand to include all 8 points.

Differential geometry

- DifferentialGeometry: a self-contained representation for a particular point on a surface so that all the other operations in pbrt can be executed without referring to the original shape. Contains
- Position
- Surface normal
- Parameterization
- Parametric derivatives
- Derivatives of normals
- Pointer to shape

Ray-Surface I ntersection

Ray-Plane I ntersection

- Ray:

$$
\begin{aligned}
& \overrightarrow{\mathbf{P}}=\overrightarrow{\mathbf{O}}+t \overrightarrow{\mathbf{D}} \\
& 0 \leq t<\infty
\end{aligned}
$$

- Plane:

$$
\begin{aligned}
& \left(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{P}}^{\prime}\right) \bullet \overrightarrow{\mathbf{N}}=0 \\
& a x+b y+c z+d=0
\end{aligned}
$$

- Solve for intersection
- Substitute ray equation into plane equation

$$
\begin{aligned}
& \left(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{P}}^{\prime}\right) \bullet \overrightarrow{\mathbf{N}}=\left(\overrightarrow{\mathbf{O}}+t \overrightarrow{\mathbf{D}}-\overrightarrow{\mathbf{P}}^{\prime}\right) \bullet \overrightarrow{\mathbf{N}}=0 \\
& t=-\frac{\left(\overrightarrow{\mathbf{O}}-\overrightarrow{\mathbf{P}}^{\prime}\right) \bullet \overrightarrow{\mathbf{N}}}{\overrightarrow{\mathbf{D}} \bullet \overrightarrow{\mathbf{N}}}
\end{aligned}
$$

Sphere

- A sphere of radius r at the origin
- Implicit: $x^{2}+y^{2}+z^{2}-r^{2}=0$
- Parametric: f(? ,?) $x=r \sin$? \cos ? $y=r \sin ? \sin$? $z=r \cos$?

Algebraic solution

- Perform in object space, WorldToObject(r, \&ray)
- Assume that ray is normalized for a while

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=r^{2} \\
& \left(o_{x}+t d_{x}\right)^{2}+\left(o_{y}+t d_{y}\right)^{2}+\left(o_{z}+t d_{z}\right)^{2}=r^{2} \\
& A t^{2}+B t+C=0
\end{aligned}
$$

Step 1

$$
\begin{aligned}
& A=d_{x}^{2}+d_{y}^{2}+d_{z}^{2} \\
& B=2\left(d_{x} o_{x}+d_{y} o_{y}+d_{z} o_{z}\right) \\
& C=o_{x}^{2}+o_{y}^{2}+o_{z}^{2}-r^{2}
\end{aligned}
$$

Algebraic solution

$$
t_{0}=\frac{-B-\sqrt{B^{2}-4 A C}}{2 A} \quad t_{1}=\frac{-B+\sqrt{B^{2}-4 A C}}{2 A}
$$

Step 2
If ($B^{2}-4 A C<0$) then the ray misses the sphere. $B^{2}-4 A C=0$?
Step 3
Calculate t_{0} and test if $t_{0}<0$
Step 4
Calculate t_{1} and test if $\mathrm{t}_{1}<0$

Cylinder

$$
\begin{aligned}
& \phi=u \phi_{\max } \quad z_{\max } \\
& x=r \cos \phi \\
& y=r \sin \phi \\
& z=z_{\min }+v\left(z_{\max }-z_{\min }\right)
\end{aligned}
$$

-First consider sides
-Later consider cap/base

Cylinder

- Implicit equation for cylinder

$$
x^{2}+y^{2}-r^{2}=0
$$

- Substituting in ray equation

$$
\left(o_{x}+t d_{x}\right)^{2}+\left(o_{y}+t d_{y}\right)^{2}=r^{2}
$$

- Giving

$$
\begin{aligned}
& A t^{2}+B t+C=0 \\
& A=d_{x}^{2}+d_{y}^{2} \\
& B=2\left(d_{x} o_{x}+d_{y} o_{y}\right) \\
& C=o_{x}^{2}+o_{y}^{2}-r^{2}
\end{aligned}
$$

References/ Shamelessly

- Pat Hanrahan, CS 348B, Spring 2005 class slides
- Yung-Yu Chuang, Image Synthesis, class slides, National Taiwan University, Fall 2005
- Kutulakos K, CSC 2530H: Visual Modeling, course slides
- UIUC CS 319, Advanced Computer Graphics Course slides

