Intro to LAN/WAN

Transport Layer

Transport Layer Topics

< Introduction (6.1)

< Elements of Transport Protocols (6.2)

= [nternet Transport
= [nternet Transport

Protocols: TDP (6.5) «—

Protocols: UDP (6.4)

socket

socket Applicati icati
: pplication 1 Application 2) .
terface interface
\ ‘ user user ‘ /
+ kernel kernel +
Socket Socket
_ TCP/UDP TCP/UDP
Underl_ymg P o Underlying
communication communication
Protocols Ethernet Ethernet Protocols
Physical Layer Physical Layer

Communications
network

Copyright ©2000 The McGraw Hill Companies Leon-Garcia & Widjaja: Communication Networks

TCP

= Connection-oriented

+ Reliable, end-to-end byte-stream
— message boundaries not preserved

< Adapt to a variety of underlying networks

< Robust in the face of failures (IP: no guarantees)
< Break data into segments
< Sliding window

TCP Service Model

< Sender and receiver create end points (sockets)
= One socket may be used for multiple connections

<= Well-known services at well known port numbers
— FTP (port 21)
— telnet (port 23), etc

= |netd deamon (UNIX)

— listens for all connects (FTP, telnet, etc)

— Forks off new process to handle new connections (a
designated ports)

— Other daemons (FTP, telnet, etc) only active when wc
— Inetd learns about what ports to use from config. fils

TCP Service Model

= All TCP connections are
— full-duplex (can send both ways)
— Point-to-point: each connection has two end points

— Does not support multicast or broadcast (need either
different protocol or Iimprovement)

— Multicast (not TCP) protocols used for multicast

((
)

((
)

A

TCP Segment Header

32 Bits

Y

Source port

Destination port

Sequence number

Acknowledgement number

TCP
header
length

S|F
Yl
N|N

O XI;C
A O0r

P|R
s|s
H| T

Window size

Checksum

Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

TCP Protocol

= TCP entitites (sender, receiver) exchange
segments

= TCP segment:
— 20-byte header (plus optional part)
— Followed by zero or more data bytes

— TCP software decides size of segments
(fragmentation)

— Segments can be split up or aggregated

o must fit into 65,515-byte IP payload

o Also networks have Maximum Transfer Unit (1
as 1500-byte limit on Ethernet

TCP Protocol

= Basic protocol uses sliding window

< Sender starts timer when It sends data

< Recelver can either piggyback ACK or alone
< Sender resends If its timer goes off

= Subtle 1ssues TCP must deal with:

— Segments can be delayed or arrive out of order
(different routes?)

— In fact, retransmissions may be different
from original

TCP Connection Establishment

Uses three-way handshake (similar to that
previously discussed)

Host 1 Host 2 Host 1 Host 2

W

-.:X‘\"n

K
SYN (SEQ =Y e

(SEQ=x+ 1,ACK=y+ 1)

(@)

<+-—Time

TCP Connection Release

= Although connections are full-duplex, think simplex for
connection release

+ Either end (sender, receiver) can send segment with FIN
It set

= FIN acknowledged, that direction is done!!
< Data may continue to flow in other direction
= Process repeated in other direction to close

= Connection closes when both ends close

< Usually two FIN-ACK pairs (4 pkts) to close
= May piggyback to reduce packets sent 0*
<+ Two-army problem: if no ACK within set ti

TCP Transmission Policy

*TCP receiver advertises its window size (remaining buffer space)

Sender
Application
doesa 2K ——
write
ACK = 2048 WIN = 2048
Application
does a 2K —
write m SEQ = 2048
Sender is _0
6 WIN =
blocked AOK = A09
2048
_ 4096 wind
ACK =
Sender may N
send up to 2K —=
m SEQ <7 055

Receiver Receiver's

buffer

0

4K

Empty

2K

Full

Application
reads 2K

2K

1K

2K

Window management in TCP.

TCP Transmission Policy

< Do not have to send immediately
— avoid many small packets

= Some TCP implementations delay pkts, ACKs for
500 msec to see If It can get more “stuff” to send

= Nagle’s Algorithm
— only 1 outstanding byte at a time
— fill up, then send

— time delay, then send 0
— bad for some apps (X - with mouse movements):

Silly Window Syndrome

= Sender sends in large chunks
= Application reads 1 byte at a time

()

Receiver's buffer is full

l

Application reads 1 byte

<—— Room for one more byte

l

-<—— Header Window update segment sent
l /
Header > New byte arrives \
1 Byte l

Receiver's buffer is full

L y

< FIX: recelver only advertises send window
full

TCP Congestion Control

< Even If sender and receiver agree, still problems

TCP Congestion Control

= Sender tracks two windows

+ “Recelver buffer” via receiver’s window (via
advertisements)

= “Network buffer” via congestion window

= “Effective buffer” is minimum of receiver and
network

= EX:

— Recelver says “8k”, Network says “4k” then 4k
— Receiver says “8k”, Network says “32k” then 8k

Avolding Congestion

= Network buffer
— starts at 1 segment
— Increases exponentially (doubles)
— until timeout or receiver’s window reached
— or threshold (initially 64K), then increases linearly
— slow start (required by TCP, Jacobson 1988)

< Internet congestion includes threshold
— linear past threshold (called congestion avi

— when timeout, reduce threshold to half ¢
window and restart slow start

Can go up -~

TCP Congestion Control

- Timeout
imeou
e
40 |-
36 = Threshold
Threshold

/

Congestion window (kilobytes)

N\

N A N I I O)
10 12 14 16 18 20 22 24~
Transmission number Q 9

An example of the Internet congestion algor

m_

/

TCP Congestion Control Summary

<= When below threshold, grow exponentially

— slow start

= \When above threshold, grow linearly

— congestion avoidance

= \WWhen timeout, set threshold to 1/2 current
set window to 1

window and

= How do yoL

— Important, since timeouts restrict throu Yo
f

select ti

— Timer management

mer values?

\V

Timer Management

< Retransmission timer: most important in TCP

<= Optimal timer setting?
— Too short, too many retransmissions, packets clog up network
— Too long, performance suffers
— Need dynamic algorithm since conditions can change

< \Want to set timeout to minimal value where segment is
known to be lost (quickly resend)

= (Generally set timer as a function of Roundtrip

= S0, need estimate of round-trip time (RTT)
— how to get it? o

= Why can’t you just measure RTT once and fix timeo /
timer?

Timer Management

= Difficult when much variance

0.3 T
|
(\ l
|
|
l
02+
=
E
4y}
O
o
o
0.1+
|
|
|
|
|
|
|
0 | J | L | | |
0 10 20 30 40

= RTT=aRTT + (1-0)M (o = 7/8, M ack time)
+ o IS smoothing function determining contribution
< + add variance, don’t update on retransmits

Round-trip time (msec)

(a)

50

Probability

0.3

o
N

o
—

0

10

|
| |
| |
| |
| |
| |
| |
|
| |
L1 L
20 30 40 50
Round-trip time (msec)

(b)

