

Introduction to LAN/WAN

Medium Access Sublayer (Part I)

Topics

- Introduction
- Multiple Access Protocols
- Ethernet
- Wireless LAN Protocols
- Bridges
- Misc (brief)
 - High-Speed LANs
 - Satellite Networks

Introduction

- Remember, two categories of networks
 - point-to-point
 - broadcast
- Key issue is who gets channel
 - example: 6-person conference call
- The Many protocols to decide
- Medium Access Control sublayer
 - lower part of data-link layer, but easier here
- The Many LANs multiaccess
 - satellites, too

Fixed Channel Allocation

Static channel allocation

– FDM, TDM

FDM

- Time delay T
- Capacity C bps
- $rac{}$ Arrival rate λ frames/sec
- $rac{\ }$ Frames mean $1/\mu$ bits

Divide into N channelsEach channel C/N bps

$$T = \frac{1}{\mu C - \lambda}$$

Dynamic Channel Allocation in LANs and MANs: Assumptions

Station Model

N independent stations

- Single Channel Assumption.
 - One shared channel for transmission
- Collision Assumption.
 - garbled if transmissions overlap
- (a) Continuous Time.(b) Slotted Time.
- (a) Carrier Sense.(b) No Carrier Sense.

Multiple Access Protocols

- ALOHA
- Carrier Sense Multiple Access Protocols
- Collision-Free Protocols
- Limited-Contention Protocols
- Wireless LAN Protocols

ALOHA - A Family of Contention Protocols

- I970's, Abramson
- The University of Hawaii
- Ground based broadcasting, packet radio
 - generalizes to uncoordinated users competing for single, shared channel
- Pure ALOHA
 - no time slots
- Slotted ALHOA
 - time slots for frames

Pure ALOHA

Transmit whenever you want

User

Pure ALOHA == Pure Chaos?

- Assume infinite collection of stations
- The Users in two states: typing or waiting
- The User *typing* a line. When done, transmit it.
 - user *waiting* for response. When done, *typing*.
- *frame time* is time to put frame on wire
 - frame length / bit rate (fixed frame length)
- Mean number of new frames per frame time
 - -N
 - What does N > 1 mean?

Analysis of Pure ALOHA

- Stations also re-generate collided frames
 - -G is old plus new frames
 - -G > N? G = N? G < N?
- ☞ Low load (N ≈ 0), few collisions: $G \approx N$
- \sim High load, many collisions: G > N
- Throughput per frame time is G times probability of frame having zero collisions:

$$S = G P_0$$

$$-$$
 ex: G=.5, P_0 =.5 so $S = .25$

- Note: P_0 is probability of successful transmission

Frame Collisions

 $rac{\sim}$ Need two frame times empty, 2G generated

- for two slots, Pr[0] = e^{-2G}

 $rac{}$ Using S=GP₀, throughput per frame time

 $S = Ge^{-2G}$

Pure ALOHA Offered Load vs. Throughput

Slotted ALOHA

- Tivide time into intervals, one for each frame
- Stations agree upon time intervals
 - one can "pip" as time keeper, like a clock
- The User's transmit only at beginning of slot
- \sim Need one frame time to be empty, G generated

- for one slot, **Pr[0]** = e^{-G}

Throughput

$$S = Ge^{-G}$$

Slotted ALOHA Offered Load vs. Throughput

Last Thoughts on Slotted ALOHA

- ☞ Best (G = 1):
 - 37% empty
 - 37% success
 - 26% collisions
- Raising G, reduces empties but increases collisions exponentially
- Expected transmissions (includes original)

- G=0, then 1 transmission; G=1 then 2.X trans.

Small increase in load, big decrease in perf

Carrier Sense Multiple Access -CSMA Protocols

- Sending without paying attention is obviously limiting
- TIN LANS, can detect what others are doing
- Stations listen for a transmission

- carrier sense protocols

Persistent and Nonpersistent

- @ 1-persistent CSMA
 - detect, send at first chance
 - wait if another sending
 - longer delay, more collisions
- *mon-persistent* CSMA
 - if empty, send
 - if not, less greedy, waits random time then repeats,
 - fewer collisions, longer delay
- *p-persistent* CSMA
 - if empty, sends with probability p
 - defers with probability q = 1 p

Carrier Sense Multiple Access

CSMA with Collision Detection

If detect collision, stop transmitting
 – frame will be garbled anyway
 CSMA with Collision Detection (CD)

CSMA/CD Closing Comments

- How long until realize a collision? Time to travel length of cable? Why not?
- ${\ensuremath{\en$
- $\ensuremath{\,{}^{\ensuremath{\sigma}}}$ Model 2τ slot as slotted ALOHA
- \approx 1-km cable has $\tau \approx 5 \ \mu sec$
- Collision detection analog
 - special hardware encoding so can detect
- Does not guarantee reliable delivery
- Basis IEEE 802.3 (Ethernet)

Collision-Free Protocols

- Collisions still occur in CSMA/CD
- rightarrow More so when "wire" long (large τ)
- Short frames, too, since contention period becomes more significant
- The Want collision free protocols
- Need to assume N stations have numbers
 0 to (N-1) wired in

Bit-Map Protocol

Have N contention slots
Station N puts 1 in slot N-1, else 0
– ex: station 0 wants to send, 1 in 0th slot

Bit-Map Protocol Performance

- ☞ N contention slots, so N bits overhead /frame
- The d data bits
- Station wants to transmit, waits
 - Low numbered: avg N/2 slots (current) + N for next
 - High numbered: avg. N/2
 - Combined avg. delay: N
- Fificiency under low load (1 sending):
 - d /(N+d)
 - average delay: N/2
- Figh load (N sending): can prorate overhead
 - d/(d+1)
 - average delay: N(d+1)/2

Where the Heck Were We?

- Throduction
- Multiple Access Protocols
 - contention
 - collision-free
- Ethernet
- Wireless LAN Protocols
- The Bridges
- Thisc (brief)
 - High-Speed LAN

Binary Countdown

- Instead of 1 bit per station, encode in binary
 - transmit address in binary
- Assume all stations see inserted bits instantaneously
- When multiple transmit, OR together
- When a station sees high-order
 1 bit where it has a zero, it
 gives up

Binary Countdown Performance

- $rac{}{}$ Efficiency: $d/(d+log_2N)$
- Sender address as first field and no overhead
- Fairness/Unfairness?
 - Mok and Ward (1979): Use virtual station numbers
 - -C,H,D,A,G,B,E,F are 7,6,5,4,3,2,1,0
 - D sends: C,H,A,G,B,E,F,D

Contention vs. Collision-Free

- Contention better under low load. *Why*?
- Collision-free better under high load. *Why*?
- The Hybrid: limited contention protocols
- The Instead of symmetric contention, asymmetric
- Divide into groups. Each group contents for same slot.
- The How to assign to slots?
 - 1 per slot, then collision free (Binary Countdown)
 - All in same slot, then contention (CSMA/CD

Adaptive Tree Walk Protocol

- Tull: The set of the s
 - Test group, if negative all ok
 - If positive, then split in two and re-test

Adaptive Tree Walk Protocol

- There to begin searching (entire army?)
 - if heavily loaded, not at the top since there will always be a collision
- Sumber levels 0, 1, 2 ...
- $rac{}$ At level *i*, $1/2^{i}$ stations below it
 - ex: level 0, all stations below it, 1 has 1/2 below...
- rightarrow If q stations want to transmit, then $q/2^i$ below
- Want number below to be 1 (no collisions)

 $-q/2^{i} = 1, i = \log_2 q$

Other Improvements

FI collision at 1, 2 idle, do we need to search 3?

Heck, Here We Are

- Introduction
- Multiple Access Protocols
 - contention
 - collision-free
- Ethernet
- Wireless LAN Protocols
- Bridges
- Misc (brief)
 - High-Speed LANs
 - Satellite Networks

Ethernet

- Ethernet Cabling
- Manchester Encoding
- The Ethernet MAC Sublayer Protocol
- The Binary Exponential Backoff Algorithm
- Ethernet Performance
- Switched Ethernet
- Fast Ethernet
- Gigabit Ethernet
- IEEE 802.2: Logical Link Control

Ethernet (IEEE 802.3)

- The Began as ALOHA, added carrier sense
- Xerox PARC built 3 Mbps version for workstations and called it *Ethernet*
 - old scientist dudes thought waves propagated through substance called "ether", so a geeky joke
- Serox, DEC and Intel made 10 Mbps standard
 - 1 to 10 Mbps
 - not "Ethernet", but close enough

Ethernet Cabling

- IOBase5 "Thick Ethernet"
 - 10 Mbps, 500 meters
- IOBase2 "Thin Ethernet" or "Thinnet"
 - BNC connectors, or T-junctions
 - Easier and more reliable than 10Base5
 - But only 200 meters and 30 stations per segment
- All on one line, then difficult to find break
 - *domain reflectometry*
 - hubs
- ☞ 10BaseT (Twisted pair)
- IOBaseF (Fiber)

Kinds of Ethernet Cabling

Name	Cable	Max. seg.	Nodes/seg.	Advantages	
10Base5	Thick coax	500 m	100	Original cable; now obsolete	
10Base2	Thin coax	185 m	30	No hub needed	
10Base-T	Twisted pair	100 m	1024	Cheapest system	
10Base-F	Fiber optics	2000 m	1024	Best between buildings	

Cable Topologies

Encoding

© 0 volts for 0 and 5 volts for 1 can be misleading

- Want start, middle and end of each bit without reference to external clock
 - Manchester Encoding
 - Differential Manchester Encoding uses changes

Ethernet Protocol

- Preamble: 10101010 to allow clock synch
- **Start of Frame: 10101011**
- Source and Destination addr: 2 or 6 bytes
 - 1 for high order bit means "multicast"
 - all 1's means "broadcast"
- The Length: data length, 46 to 1500
 - very small frames, problems, so pad to 46

Bytes	8	6	6	2	0-1500	0-46	4				
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum]			
))						
(b)	Preamble	Destination address	Source address	Length	Data	Pad	Check- sum				
Frame formats. (a) DIX Ethernet, (b) IEEE 802.3.											

Short, Short Frames

Collision Action?

- rightarrow Each slot of length 2τ
- Tf collision, then wait 0 or 1 slot
- Tf another collision, then wait 0, 1, 2, 3 slots
- rightarrow If another collision, then wait 0 to 2³-1 slots
- $rac{}$ After *i* collisions, wait 0 to 2ⁱ-1 slots

- called *binary exponential backoff*

- why is this a good idea? Consider other options
- After 10 collisions, wait 0 to 1023 slots

The After 16 collisions, throw in the towel

Now, Where Were We?

- Therefore Introduction
- Multiple Access Protocols
- IEEE 802 Standard
 - Ethernet (802.3)
- The Wireless LAN Protocols

J Misc

