Introduction to LAN/WAN

Data Link Layer

Topics

< |ntroduction
= Errors

< Protocols

= Modeling

= Examples

Introduction

= Reliable, efficient communication between
two adjacent machines

= Machine A puts bits on wire, B takes them
off. Trivial, right? Wrong!
< Challenges:
— Circuits make errors
— Finite data rate
— Propagation delay

= Protocols must deal!

Data Link Layer Functions

= Provides a well-defined service interface to the
network layer.

< Determines how the bits of the physical layer
are grouped into frames (framing).

< Deals with transmission errors (CRC and ARQ).

< Flow control: regulates the flow of frames
= Performs general link layer management. (seq #,)
protocols, etc) s

ACK/NAK

>- . >-

Data Data Data Data

Data Data Data

>
ACK/ ACK/ ACK/
NAK NAK NAK

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Data Link Services

<+ Network layer has bits

= Says to data link layer:
— “send these to this other network layer”

< Data link layer sends bits to other data link
layer

< Other data link layer passes them up t
network layer

Hioesl 1

[L
]

IL
1

Data Link Services

Hest 2

[L
]

[L
1

Fig. 3-1. {a] ¥Virual communication. {b) Actwual communication. ™

[a]

Hios1 1 Haal 2
L
3 L]
Fo
1
Aciual
dai ih
. o A
L]

Packets Packets

t s t e

(a) Data link|_ _| Data link
A Layer Frames Layer
Physical Physical B
Layer Layer
M »
) 2 2
2| 3 |2[1j« _ » 12| 3 |2[1
Medium

A B

1| Physical layer entity

2 | Data link layer entity

Copyright ©2000 The McGraw Hill Companies Leon-Garcia & Widjaja: Communication Networks

Types of Services Possible

<+ Unacknowledged connectionless (best effort)
— No acknowledgements
— No logical connection beforehand
— Frame lost, no detection or recovery

— Why would you want this service?
+ When loss infrequent, easy for upper layer to recover
o “Better never than late” (real-time traffic)

= Acknowledged connectionless service
— Still no connection |
— Packets acknowledged

— Why would you want this service?
+ Unreliable channel (wireless)

Types of Services Possible

+ Acknowledged connection-oriented service
— Connection iIs set up
— All frames are numbered

— Data link guarantees:
o All frames sent are received
o No duplicates
o Frames received in order
o Network layers sees equivalent of reliable bit:s

Framing

< Data link breaks physical layer stream of bits into
frames
...010110100101001101010010. ..

< Varying propagation delays: can’t count on timing

= How does recelver detect boundaries?
— Length count
— Byte stuffing: special flag characters
— Bit stuffing
— Special physical layer encoding

Length count

< First field is length of frame
< Count until end

< Then, look for next frame

= Problems?

Length Count Problems

[N

[al|s(1|2|3|d4|s5|el7|2|a|z|al1|2|3|4]|5|e|B|(7|B]|3
1 o 'y | .r 11 .r | " .
Frame 1 Frame 2 Frame 3 Fran
£ characlers Soharaciars 2 characiers S char

Error
[I'J]51ES-1?E-TEEIEI:I1EEdEE-EITEIEI

1L I
=~ -

Frame 1 Frame 2 Mo a
[Wrong| characier courn

Byte Stuffing: Special Characters

= Reserved ASCII characters for framing delimiters
(beginning and end)
«= HDLC Example:

— Beginning: DLE STX (Data-Link Escape, Start of TeXt)
— End: DLE ETX (Data-Link Escape, End of TeXt)

= Problems?
= Solution?

Byte Stuffing

[HDLC Example]

< Prob 1: reserved character patterns occur within
the “transparent” data.

= Prob. 1 Soln:

— sender stuffs an extra DLE into the data stream just
before each occurrence of an “accidental” DLE in the
data stream.

— The data link layer on the receiving end unstuffs the

B |DLE| H

DLE | DLE| H

B |DLE| H

Bit Stuffing

= Prob. 2: Not all architectures are character oriented: arbitrary-
sized characters?

= Soln:
— stuff at bit level (bit stuffing)

— Each frame begins and ends with a special bit pattern called a
flag byte [01111110].

— What if flag bit pattern [01111110] occurs in data?

— Soln: Whenever sender data link layer encounters 5
consecutive 1’s In the data stream, it automatically stL
bit into the outgoing stream.

— When the recelver sees 5 consecutive incoming 1
by a 0 bit, it automatically destuffs the O bit befor
data to the network layer.

— Problem? Wasted bandwidth/processing

Bit Stuffing

Input Stream

_

Stuffed Stream

Unstuffed Stream

Special PHY-Layer Encoding

< Send a signal that does not have legal
representation

— low to high means a 1

— high to low means a 0

— high to high means frame end
— |EEE 802.4 (token bus)

= Combination of above:

— length plus frame boundary
— |EEE 802.3 (ethernet)

Topics

< [ntroduction
< Framing

= Errors
— why
— detecting
— correction

< Protocols
= Modeling ?
= Examples

KIIIIIII]] KIIIIIII']

T

D

Errors

= Trends
< Lines becoming digital
— errors rare

= Copper the “last mile”
— errors infrequent

= Wireless
— errors common

= Errors are here for a while

+ Plus, consecutive errors
— bursts

Handling Errors

<+ Add redundancy to data

= Example:
— “hello, world” Is the data
— “hzllo, world” received (detect? correct?)
— “xello, world” received (detect? correct?)
— “Jello, world” received (detect? correct?)
— what about similar analysis with “caterpillar”?

= Some: error detection

= More: error correction (Forward Error
Correction)

What 1s an Error?

< Frame has m data bits, r redundancy bits
— n = (m+r) bit codeword

< Glven two codewords, compute distance:
— 10001001

—10110001

— 00111000

— XOR, 3 bits difference
— Hamming Distance

= “So what?”

Code Hamming Distance

< Two codewords are d bits apart,

— then d errors are required to convert one to
other

= Code Hamming Distance min distance
between any two legal codewords

Error Detection using Parity Bit

< Single bit is appended to each data chunk
— makes the total number of 1 bits even/odd

= Example: for even parity
— 1000000(1)
—1111101(0)
— 0000000(21)

<= What Is the Hamming distance?
= How many bit errors can It detect?

< How many bit errors can It correct?

Hamming Distance Example

<= Consider 8-bit code with 4 valid codewords:

00000000 00001111 11110000 11111111

< What Is the Hamming distance?

= \What is the min bits needed to encode?
— What are n, m, and r?

= \What If 00001110 arrives?
= \What 1f 00001100 arrives?

Ham On

< Consider a 10-bit code with 4 codewords:
00000 00000 00000 11111 1111100000 1111111111
= Hamming distance?
= Correct how many bit errors?
— 10111 00010 received, becomes 11111 00000 corrected
— 11111 00000 sent, 00011 00000 received
= Might do better
— 00111 00111 received, 11111 11111 correcte
— and contains 4 single-bit errors

Fried Ham

= All possible data words are legal

< Choosing careful redundant bits can results in large
Hamming distance
— to be better able to detect/correct errors

< To detect d 1-bit errors requires having a Hamming
Distance of at least d+1 bits
— Why?

< To correct d errors requires 2d+1 bits.
— Why?

Designing Codewords

= Fewest number of bits needed for 1-bit errors?
— n=m+r bits to correct all 1-bit errors

< Each message has n illegal codewords a
distance of 1 from it

— form codeword (n-bits)
— Invert each bit, one at a time

<+ Need n+1 bits for each message
— n that are one bit away and 1 for the me

Designing Codewords (cont)

= The total number of bit patterns = 2"
— S0, (n+1) 2m< 2n
— S0, (Mm+r+1) < (2m+) / 2m
— Or, (m+r+1) < 2
= Glven m, have lower limit on the number of

check bits required to detect (and co
1-bit errors

Example

+ 8 data bits, m = 8
= How many check bits required to detect and

correct 1-bit errors?
=(8+r+1)<?2

— Is 3 bits enough?

— Is 5 bits enough?

+ Use Hamming code to achieve lower

Hamming Code

+ Bits are numbered left-to-right starting at 1
+ Powers of two (1, 2, 4 ...) are check bits
< Check bits are parity bits for previous set

= Bit checked by only those check bits in the expansion
— example: bit 19 expansion=1+ 2 + 16

<= Examine parity of each check bit, k
— If not, add k to a counter

Ham It Up

= Examples:
— Check bit 1 covershits 1, 3,5 ...
— Check bit 2 covers hits 2, 3, 6, 7, 10, 11 ...

Hamming Code and Burst Errors

Char ASCI Check bits
H 1001000 tmnnn
Z] 1100001 10111007001
B 1101101 111090107901
[T 1101101 111010701071
| 1101 001 011010110071
a 1101110 01101010110
q 11007111 11111007111
0100000 10011000000
c 1100011 11111000017 1 ‘-\\
0 1101111 oo0101011111 \
d 1100700 111110071700 -
o 1100101 Y 00111000101

Crder of bit transmission

Error Correction

< EXpensive
— example: 1000 bit message
— Correct single errors? (10 check bits)
— Detect single errors? (1 parity bit)
= Useful mostly:
— simplex links (one-way)
— long delay links (say, satellite)

— links with very high error rates
o would get garbled every time resent

Error Detection

= Most popular use Polynomial Codes or Cyclic
Redundancy Codes (CRCs)

— checksums
= Acknowledge correctly received frames

< Discard incorrect ones
— may ask for retransmission

= Error correction Vs. detection, tradeoff between:
— Number of redundant bits added
— Packet retransmission overhead

— Natural ecological niche for each technique deg
on error rate

Polynomial Codes

< Bit string as polynomial w/0 and 1 coeffs
— ex: k bit frame, then x*1 to x°
— ex: 10001 is 1x*+0x3+0x2+0x1+1xY = x4+x0
+ Polynomial arithmetic mod 2

10011011 11110000 00110011
+11001010 -10100110 +11001101
01010001 01010110 11111110

Doing CRC

< Sender + recelver agree generator polynomial

— G(x), ahead of time, part of protocol
— with low and high bitsa ‘1’, say 1001

+ Compute checksum to frame (m bits)
— M(X) + checksum to be evenly divisible by G(x)
= Receilver will divide by G(x)
— If no remainder, frame Is ok %
— If remainder then frame has error, so discar

< “But how do we compute the checksu

Computing Checksums

= Let r be degree of G(X)
— If G(X) = x2+x9 =101, thenris 2

= Append r zero bits to frame M(x)
— get X"M(X)
— ex: 1001 + 00 = 100100

= Divide X"M(x) by G(x) using mod 2 divisl
—ex: 100100 / 101 :

< Care about remainder

+“Huh? Do you have an example?”

Dividing X"M(X) by G(x)
1011
101 | 100100
101
011
000
110
101
110
101
11 <« Remal

“Ok, now what?”

Computing Checksum Frame

< Subtract (mod 2) remainder from x"M(X)
100100
11
100111

<= Result 1s checksum frame to be transmitted
- T(x) = 100111

= What If we divide T(x) by G(x)?
— Comes out evenly, with no remainder
— Ex: 210,278 / 10,941 remainder 2399
— 210,279 - 2399 is divisible by 10,941

= “Cool!”

Let’s See If 1t Worked

1011
101 | 100111
101
011
000
111
101
101
101
O <« yeah!

Another
Example

(Figure 3-8)

Frame

TTaTal1Tall

Cereratar: 1001 1
Me=age aller appending 4 zem Bis:

o

1T1Ta1a11Ta000

ool ol

1oo11| 1 1
1 0

1
1

1
o
1

1
1

o o

1
l
1
1

1

o —-.

o Qo |99

n—l

Q11T o000

o o o o 0o o

n—l

O —-=

0o Qo | |gg

n—l

oo | Qg |99 | Q-
Ol -=

o

o
o
o=t

|:|_l
—
)

oo QO
£ -
ﬂ—l
[
o Q

Power of CRC?

< Assume an error, T(X) + E(X) arrives

<= Each 1 bit in E(X) Is an Iinverted bit

< Receiver does [T(X) + E(X)] / G(X)

= Since T(X) / G(x) = 0, result is E(x) / G(x)

+ If E(X) factor of G(x), then error slips by
— all other errors are caught

Power of CRC!I
= |EEE 802 Standard:

_ X32+X26+X22+X16+X12+ X12.|_ X11.|_ X10.|_ X8.|_ X7.|_ X5.|_
X4+ x%+ X1+ 1

— Detects burst errors of length 32 or less
< FInal words:

— Checksum calculation seems complex

— Only need a simple shift register circuit to compute
and verify

— Virtually all LANs and point-to-point Iin
dor
Ay

— Previous assumption: bits in frame are ra
— Correlation between bits make errors mo

R

 commor

