
Introduction to LAN/WAN

Data Link Layer

Topics

Introduction
Errors
Protocols
Modeling
Examples

Introduction
Reliable, efficient communication between
two adjacent machines
Machine A puts bits on wire, B takes them
off. Trivial, right? Wrong!
Challenges:
– Circuits make errors
– Finite data rate
– Propagation delay

Protocols must deal!

Data Link Layer Functions

Provides a well-defined service interface to the
network layer.
Determines how the bits of the physical layer
are grouped into frames (framing).
Deals with transmission errors (CRC and ARQ).
Flow control: regulates the flow of frames.
Performs general link layer management. (seq #,
protocols, etc)

1 2 3 4 5

Data Data Data

ACK/NAK

Data

1 2 3 4 5
Data Data Data Data

ACK/
NAK

ACK/
NAK

ACK/
NAK

ACK/
NAK

Figure 5.7

End to End

Hop by Hop

Leon-Garcia & Widjaja: Communication Networks

Copyright ©2000 The McGraw Hill Companies

Data Link Services

Network layer has bits
Says to data link layer:
– “send these to this other network layer”

Data link layer sends bits to other data link
layer
Other data link layer passes them up to
network layer

Data Link Services

3 2 11 2
2

1

3 2 11 2
2

1

2
1

Medium

1

2

Physical layer entity

Data link layer entity
3 Network layer entity

Physical
Layer

Data link
Layer

Physical
Layer

Data link
Layer

A B

A B

Packets Packets

Frames

(a)

(b)

Figure 5.2
Leon-Garcia & Widjaja: Communication NetworksCopyright ©2000 The McGraw Hill Companies

Types of Services Possible

Unacknowledged connectionless (best effort)
– No acknowledgements
– No logical connection beforehand
– Frame lost, no detection or recovery
– Why would you want this service?

When loss infrequent, easy for upper layer to recover
“Better never than late” (real-time traffic)

Acknowledged connectionless service
– Still no connection
– Packets acknowledged
– Why would you want this service?

Unreliable channel (wireless)

Types of Services Possible

Acknowledged connection-oriented service
– Connection is set up
– All frames are numbered
– Data link guarantees:

All frames sent are received
No duplicates
Frames received in order
Network layers sees equivalent of reliable bit stream

Framing

Data link breaks physical layer stream of bits into
frames

...010110100101001101010010...

Varying propagation delays: can’t count on timing
How does receiver detect boundaries?
– Length count
– Byte stuffing: special flag characters
– Bit stuffing
– Special physical layer encoding

Length count
First field is length of frame
Count until end
Then, look for next frame
Problems?

Length Count Problems

Byte Stuffing: Special Characters

Reserved ASCII characters for framing delimiters
(beginning and end)
HDLC Example:
– Beginning: DLE STX (Data-Link Escape, Start of TeXt)
– End: DLE ETX (Data-Link Escape, End of TeXt)

Problems?
Solution?

Byte Stuffing
[HDLC Example]

Prob 1: reserved character patterns occur within
the “transparent” data.
Prob. 1 Soln:
– sender stuffs an extra DLE into the data stream just

before each occurrence of an “accidental” DLE in the
data stream.

– The data link layer on the receiving end unstuffs the
DLE before giving the data to the network layer.

HDLC Byte Stuffing

DLE STX DLE ETXTransparent Data

DLE STX DLE ETXA B DLE H W

DLE STX DLE ETXA B DLE H WDLE

DLE STX DLE ETXA B DLE H W

Stuffed

Unstuffed

Before

Bit Stuffing
Prob. 2: Not all architectures are character oriented: arbitrary-
sized characters?
Soln:
– stuff at bit level (bit stuffing)
– Each frame begins and ends with a special bit pattern called a

flag byte [01111110].
– What if flag bit pattern [01111110] occurs in data?
– Soln: Whenever sender data link layer encounters 5

consecutive 1’s in the data stream, it automatically stuffs a 0
bit into the outgoing stream.

– When the receiver sees 5 consecutive incoming 1’s followed
by a 0 bit, it automatically destuffs the 0 bit before sending the
data to the network layer.

– Problem? Wasted bandwidth/processing

Bit Stuffing

Input Stream

Stuffed Stream

Unstuffed Stream

0110111111100111110111111111100000

01101111101100111110011111011111000000

0110111111100111110111111111100000

Stuffed bits

Special PHY-Layer Encoding
Send a signal that does not have legal
representation
– low to high means a 1
– high to low means a 0
– high to high means frame end
– IEEE 802.4 (token bus)

Lastly, 2 or more delimiting methods used
Combination of above:
– length plus frame boundary
– IEEE 802.3 (ethernet)

Topics

Introduction
Framing
Errors ←
– why
– detecting
– correction

Protocols
Modeling ?
Examples ?

Errors
Trends
Lines becoming digital
– errors rare

Copper the “last mile”
– errors infrequent

Wireless
– errors common

Errors are here for a while
Plus, consecutive errors
– bursts

Handling Errors

Add redundancy to data
Example:
– “hello, world” is the data
– “hzllo, world” received (detect? correct?)
– “xello, world” received (detect? correct?)
– “jello, world” received (detect? correct?)
– what about similar analysis with “caterpillar”?

Some: error detection
More: error correction (Forward Error
Correction)

What is an Error?
Frame has m data bits, r redundancy bits
– n = (m+r) bit codeword

Given two codewords, compute distance:
– 10001001
– 10110001
– 00111000
– XOR, 3 bits difference
– Hamming Distance

“So what?”

Code Hamming Distance

Two codewords are d bits apart,
– then d errors are required to convert one to

other
Code Hamming Distance min distance
between any two legal codewords

Error Detection using Parity Bit

Single bit is appended to each data chunk
– makes the total number of 1 bits even/odd

Example: for even parity
– 1000000(1)
– 1111101(0)
– 0000000(1)

What is the Hamming distance?
How many bit errors can it detect?
How many bit errors can it correct?

Hamming Distance Example

Consider 8-bit code with 4 valid codewords:

00000000 00001111 11110000 11111111

What is the Hamming distance?
What is the min bits needed to encode?
– What are n, m, and r?

What if 00001110 arrives?
What if 00001100 arrives?

Ham On
Consider a 10-bit code with 4 codewords:
00000 00000 00000 11111 11111 00000 11111 11111

Hamming distance?
Correct how many bit errors?
– 10111 00010 received, becomes 11111 00000 corrected
– 11111 00000 sent, 00011 00000 received

Might do better
– 00111 00111 received, 11111 11111 corrected
– and contains 4 single-bit errors

Fried Ham

All possible data words are legal
Choosing careful redundant bits can results in large
Hamming distance
– to be better able to detect/correct errors

To detect d 1-bit errors requires having a Hamming
Distance of at least d+1 bits
– Why?

To correct d errors requires 2d+1 bits.
– Why?

Designing Codewords

Fewest number of bits needed for 1-bit errors?
– n=m+r bits to correct all 1-bit errors

Each message has n illegal codewords a
distance of 1 from it
– form codeword (n-bits)
– invert each bit, one at a time

Need n+1 bits for each message
– n that are one bit away and 1 for the message

Designing Codewords (cont)

The total number of bit patterns = 2n

– So, (n+1) 2m < 2n

– So, (m+r+1) < (2m+r) / 2m

– Or, (m+r+1) < 2r

Given m, have lower limit on the number of
check bits required to detect (and correct!)
1-bit errors

Example

8 data bits, m = 8
How many check bits required to detect and
correct 1-bit errors?
(8 + r + 1) < 2r

– Is 3 bits enough?
– Is 5 bits enough?

Use Hamming code to achieve lower limit

Hamming Code
Bits are numbered left-to-right starting at 1
Powers of two (1, 2, 4 ...) are check bits
Check bits are parity bits for previous set
Bit checked by only those check bits in the expansion
– example: bit 19 expansion = 1 + 2 + 16

Examine parity of each check bit, k
– If not, add k to a counter

If 0, no errors else counter gives bit to correct

Ham It Up
Examples:
– Check bit 1 covers bits 1, 3, 5 ...
– Check bit 2 covers bits 2, 3, 6, 7, 10, 11 ...

Hamming Code and Burst Errors

Error Correction
Expensive
– example: 1000 bit message
– Correct single errors? (10 check bits)
– Detect single errors? (1 parity bit)

Useful mostly:
– simplex links (one-way)
– long delay links (say, satellite)
– links with very high error rates

would get garbled every time resent

Error Detection

Most popular use Polynomial Codes or Cyclic
Redundancy Codes (CRCs)
– checksums

Acknowledge correctly received frames
Discard incorrect ones
– may ask for retransmission

Error correction Vs. detection, tradeoff between:
– Number of redundant bits added
– Packet retransmission overhead
– Natural ecological niche for each technique depending

on error rate

Polynomial Codes
Bit string as polynomial w/0 and 1 coeffs
– ex: k bit frame, then xk-1 to x0

– ex: 10001 is 1x4+0x3+0x2+0x1+1x0 = x4+x0

Polynomial arithmetic mod 2
10011011 11110000 00110011

+11001010 -10100110 +11001101
01010001 01010110 11111110
Long division same, except subtract as above
“Ok, so how do I use this information?”

Doing CRC

Sender + receiver agree generator polynomial
– G(x), ahead of time, part of protocol
– with low and high bits a ‘1’, say 1001

Compute checksum to frame (m bits)
– M(x) + checksum to be evenly divisible by G(x)

Receiver will divide by G(x)
– If no remainder, frame is ok
– If remainder then frame has error, so discard

“But how do we compute the checksum?”

Computing Checksums

Let r be degree of G(x)
– If G(x) = x2+x0 = 101, then r is 2

Append r zero bits to frame M(x)
– get xrM(x)
– ex: 1001 + 00 = 100100

Divide xrM(x) by G(x) using mod 2 division
– ex: 100100 / 101

Care about remainder
“Huh? Do you have an example?”

Dividing xrM(x) by G(x)
____1011__

101 | 100100
101
011
000
110
101
110
101
11 ← Remainder

“Ok, now what?”

Computing Checksum Frame
Subtract (mod 2) remainder from xrM(x)

100100
11

100111

Result is checksum frame to be transmitted
– T(x) = 100111

What if we divide T(x) by G(x)?
– Comes out evenly, with no remainder
– Ex: 210,278 / 10,941 remainder 2399
– 210,279 - 2399 is divisible by 10,941

“Cool!”

Let’s See if it Worked
____1011__

101 | 100111
101
011
000
111
101
101
101

0 ← yeah!

Another
Example

(Figure 3-8)

Power of CRC?
Assume an error, T(x) + E(x) arrives
Each 1 bit in E(x) is an inverted bit
Receiver does [T(x) + E(x)] / G(x)
Since T(x) / G(x) = 0, result is E(x) / G(x)
If E(x) factor of G(x), then error slips by
– all other errors are caught

Power of CRC!!
IEEE 802 Standard:
– x32+x26+x22+x16+x12+ x12+ x11+ x10+ x8+ x7+ x5+

x4+ x2+ x1+ 1
– Detects burst errors of length 32 or less

Final words:
– Checksum calculation seems complex
– Only need a simple shift register circuit to compute

and verify
– Virtually all LANs and point-to-point lines use it
– Previous assumption: bits in frame are random
– Correlation between bits make errors more common

