Essential Usability Metrics Suite

The suite has evolved considerably as research and experience have accumu-
lated [Constantine, 1996e; 1997¢; Noble and Constantine, 1997], Currently, five
metrics are included that together cover an assortment of measurements likely to
be significant to designers seeking to improve the usability of their software:

1. Essential Efficiency
2. Task Concordance
3. Task Visibility

4. Layout Uniformity
5. Visual Coherence

The first three of these—Essential Efficiency, Task Concordance, and Task Visibil-
ity—are procedural or task-sensitive metrics based on essential use cases. These
three metrics can be used to measure the quality either of specific parts of the user
interface or of complete user interface architectures. The simple structural metric
of Layout Uniformity assesses aspects of a single interaction context taken in iso-
lation. The suite is rounded out by a powerful content-sensitive or semantic met-

ric, Visual Coherence, which can be used to evaluate either isolated interaction

contexts or complete user interface architectures. With one exception, which will
be explained, the metrics are normalized to a range of 0 to 100 so that they can be
interpreted like percentages, with 100 meaning your design is perfect or as good as
it can get in terms of whatever quality is being measured.

ESSENTIAL EFFICIENCY

The essential use case narrative is an ideal against which the actual interaction
with a given design can be compared. In keeping with the Simplicity Principle,
short narratives ought to be realized through designs that support brief, straight-
forward interaction. Essential Efficiency (EE) is a simple measure of how closely a
given user interface design approximates the ideal expressed in the essential use
case model. EE is just the ratio of the essential length to the enacted length—that
is, the ratio of the number of user steps in the
essential use case narrative to the number of
enacted steps needed to perform the use case
with a particular user interface design:

Y .
EFE = 100 - essential

enacted

Enacted steps are defined by counting rules that govern what constitutes a sin-
gle discrete user action, (See sidebar, Counting Steps.)

For example, consider the ATM interface introduced in Chapter 5. For the
number of essential steps, we just count the number of lines {n the loft column of
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the essential use case narrative, the “User Intention” model. For the enacted use
case, we count the number of user actions according to the counting rules estab-
lished for enacted steps. The essential use case in this ATM example has three
steps (identify self, choose, take money), while the enacted use case illustrated
involves eight discrete user actions, which means EE = 37.5% for the existing sys-
tern. Without changing to exotic new technologies, an improved interface could be
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designed that offered the customer the choice
of selecting “the usual” to initiate a cash with-
drawal from the usual account in the amount
usually requested. This would result in only
five steps for the enacted use case (insert card,
enter PIN, select “the usual,” take card, take
money)} for an Essential Efficiency of EE =
62.5%, a substantial improvement.

Because Essential Efficiency compares
enacted steps to the essential narrative, the
results are dependent on having a good essen-
tial use-case model. Sloppy or incomplete
modeling can yield numbers that look better
than theéy are. In practice, the use case narra-
tives should be reviewed to see whether addi-
tional simplification and generalization are
possible before computing Essential Efficiency.
Of course, the degree of simplification in the
essential narrative will not affect comparisons
of alternative designs in terms of EE for the
same use cases.

EFE can also be computed for a mix of tasks.
If the overall efficiency of a design for an entire
mix of tasks is of interest, the Essential Effi-
ciencies of the various tasks can be weighted by the probability (expected relative
frequency) or relative importance of each task:

EEweighted - pr * EEJ
i
where

p; = probability (or weighted importance) of task i
EE, = essential efficiency for task i

1

f

In practice, however, designers are often not in a position to make good esti-
mates of the expected frequencies of the various tasks. For this reason, the average
Essential Efficiency for the most common or most important few tasks is often sub-
stituted.

Computing the weighted EE is especially useful for considering design trade-
offs. In most cases, simplifying one task or part of the interface will make things
more difficult somewhere else. By considering the average EF or the weighted FE,
the overall impact of a ¢hange can be evaluated.
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TASK CONCORDANCE

Task Concordance (TC) is another metric based on use cases that evaluates support
of efficiency and simplicity. TC is an index of how well the distribution of task
' difficulty using a particular interface design
fits with the expected frequency of the various
tasks. Good designs will generally make the
more frequent tasks easier. TC is computed
from the correlation between tasks ranked by
anticipated frequency in use and by enacted
difficulty. Task Concordance is the exception
to the rule that metrics in the suite behave as
percentages; TC ranges from —100 to +100%.
When a design is perfect in terms of Task Con-
cordance—that is, when more frequent tasks
are always shorter than less frequent tasks—TC = 100%. If the design is basically
backwards, with more frequent tasks taking more steps, then TC will be negative,
with TC = —100% for a completely wrong-headed design. TC will be 0% or
close to it whenever the design is essentially random or unrelated to the tasks to
be supported.

Although TC could be defined in a number of different ways, for simplicity we
use the rank-order correlation between task frequency and task length employing a
statistic called Kendall’s t (Greek tau). To compute T, it is only necessary to list all
the tasks in order of their estimated or expected frequency along with their
enacted difficulty. Use cases are compared for difficulty according to the number
of enacted steps required for completion.

Ranking tasks by expected frequencies has
several advantages over trying to estimate
actual frequencies. Absolute frequencies of
tasks, as required to compute Layout Appro-
priateness (See sidebar, Other Yardsticks) or
weighted Essential Efficiency, are difficult to
estimate prior to implementation. Most ana-
lysts find it easier to judge whether one task is
likely to be relatively more or less common
than another, without regard to the actual
numbers. For example, you may know with
absolute confidence that initializing a new
database will be much rarer than entering &
new. customer. and yet have not the slightest
idea of the exact percentage of time either will
occur. Rank orderings are also typically more
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dependable than absolute frequency estimates, which often have to be pulled from
thin air. Use cases can be ranked by expected frequency using the same kind of
simple card-sorting techniques that are used to
rank user roles and to identify focal use cases
(see Chapter 4).

Kendall's 7 offers an appealing way to com-
pute Task Concordance because it is a statistic
that is simple to understand. In its basic form,
it is just the fraction of all pairs of items that
are correctly ordered versus incorrectly
ordered. More precisely, the formula for Task
Concordance is a ratio:

D
TC—-lOD‘T—lOO'F
where

D = discordance score: number of pairs of tasks ranked in correct order by
enacted length less number of pairs out of order
P = number of possible task pairs

If every task has a different difficulty or enacted length, P is simply

_ NIN-1)
2

P
where
N = number of tasks being ranked

The formula for Kendall’s 1 gets considerably more complicated if there are
ties in either the ranking by expected frequency or by enacted length. We find it
generally better to find some way to break ties than to resort to the more complex
calculation, although nearly any good statistics software will do the work for you.
Ties in rankings by enacted length can be broken by taking into account differ-
ences in the complexity of individual steps or in how they are combined.

For user interface designs with lots of tasks, using a program, such as any stan-
dard statistical software package, is recommended, but, for simple problems, TC
can easily be calculated by hand. Consider a screen with five representative tasks
that the analysts figure will probably occur ranked as follows:
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Tasks Enacted Length
{ranked in order of descending (number of user steps
expected frequency) in enacted use case)
Task A 7

Task E 7

Task B 5

Task D 8

Task C 6

The current design results in the enacted lengths shown in the right-hand col-
umn. We start by breaking the tie between the first and second ranked tasks. Let us
say that task A is judged to be marginally more difficult to carry out than task E,
even though they have the same number of enacted steps.

For each pair of numbers in the right-hand column, we ask whether the pair is
in the right order or the wrong order relative to the ranking by expected frequency.
For each pair in the right order, we add 1 to the discordance score, D, in the for-
mula for TC; for each pair in the wrong order, we subtract 1. In other words, we
compare 7+ to 7, which gives a -1, then 7+ to 5, which gives another —1, then 7+ 10
8, which adds 1, and so forth, until we have counted all the comparisons. Adding
it all up gives I = —2. Then, we find P:

5-4
P-——2——10
TC =-20%

‘The design being evaluated is, all in all, pretty poor since it means the user
interface is quite backwards. What if we could improve a bit on the more frequent
tasks? We might try to change the design to eliminate a few steps in the two most
frequent tasks, only to find that this makes task B, the third ranked, more difficult:

Tasks Enacted Length
(ranked in order of descending (number of user steps
expected frequency) in enacted use case)
Task A 4

Task E 6

Task B 7

Task D 8

Task C ‘ b
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Computing Task Concordance for the revised design, we get
TC=52.7%

which is probably quite an improvement at the end of the day.

TASK VISIBILITY

Task Visibility (TV) is another relatively simple procedural metric based on use
cases, It is grounded in the Visibility Principle, the notion that user interfaces
should show users exactly whai they need to know or need to use to be able to
complete a'given task. It measures the fit between the visibility of features and the
capabilities needed to complete a given task or set of tasks.

Quantifying visibility is a more subtle
challenge than it first appears to be, and sev-
eral revisions have been required to devise a
metric that is simple vet reflective of sound
design practice. The visibility of user interface
features is a matter of degree. Things that are
immediately obvious from looking at the cur-
rent screen are more visible than those you
have to open a menu to find, which are more
visible than those located in other interaction
contexts. The relative importance of visibility
also depends on aspects of the task. It is more
vital to have immediate access to those things that are always required to complete
a use case than those that may or may not be needed for a particular enactment. It
may be acceptable, for example, to place features needed to enact an extension use
case one level removed on a separate interaction context, as reflected in the rules
for deriving content models covered in Chapter 6.

Ultimately, it proved easiest to define Task Visibility in terms of the enacted
steps rather than interface features, separating out those steps that use hidden
capabilities or that are taken in order to gain access to features. A feature is visible
if you can see it when you need it, so enacted steps performed in order to see or
gain access to parts of the user interface must reflect reduced task visibility. The
formula for Task Visibility is

S 1

total  y;

TV:100-( ! ZV]
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where
S,y = total number of enacted steps to complete use cases
V. = feature visibility (0 to 1) of enacted step 1

The formula for TV is expressed as a percent of the total number of steps
because longer, more complex tasks may legitimately need to be distributed across
more than one interaction context. Task Visibility reaches a maximum of 100%
when everything needed for a step is visible directly on the user interface as seen
by the user at that step. Visibility would reach 0% for a workable design only
under very exceptional circumstances. One
example might be a high-security interface for
remote access to highly sensitive information.
When the user connects, there is no prompt for
name, identification, or password; the user
must know how to type these, in what order,
and with what separators. Successful log-on is
indicated only by the cursor’s moving down a
line, after which the user must type the correct
series of commands on the blank screen with-
out prompting or feedback. In such a command-line interface, every enacted step
must be accomplished entirely on the basis of “knowledge in the head” [Norman,
1988), without visible cues or prompting.

Task Visibility can be evaluated for individual use cases or for extended task
scenarios that might incorporate any number of use cases. To calculate TV, an
essential use case or set of use cases is enacted with a given user interface design.
The total number of enacted steps is tallied. For each enacted step, the analyst
determines whether the enacted step was performed to gain access o features that
were not visible on the user interface as it would appear to the user at that point or

" whether the step used hidden features not visible on the interface. The counting

rules for enacted steps have already been covered in a sidebar; the rules for count-
ing feature visibility are presented in another one. (See sidebar, Visibility Rules.)

Task Visibility takes into account only one side of the concept of WYSIWYN,
or What You See Is What You Need. It ignores whether things that are not needed
are also found on the user interface. In principle, we could reduce Task Visibility
whenever unused or unnecessary features are incorporated into the user interface.
In practice, this refinement makes sense only if all use cases supported by
the system are considered in the calculation, which is more often than not quite
impractical. :

For an example, consider preparing a slide for an on-screen presentation. The
presenter wants an object to enter automatically from the right of the screen when
the slide first appears, How does one accomplish this in PowerPoint 977




Essential Usability Metrics Suite

Enacted Step Type Visibility
select object direct 1.0
open 511ide Show menu exposing 0.5
open Custom Animation dialogue suspending 0.0
open drop-down list - exposing 0.5
sefect Fly From Right direct 1.0
click on Timing tab expasing 0.5
set Automatically option button direct 1.0
click 0K to close dialogue suspending 0.0

Total 4.5

Since there are eight steps in this enactment, TV = 56.25%. Other enactments
are possible, but Task Visibility varies little. Task Visibility might be improved in
several ways. For instance, one can argue that the conditions under which anima-
tion takes place and the style of animation are closely related and ought to be
found on the same dialogue tab. Animation could also be considered a property of
the object, to be made available on a property inspector instead of within a modal
dialogue that blocks other interaction until dismissed.

LAYOUT UNIFORMITY

Not every developer who ends up responsible for user interface design necessarily
has a graphics designer’s eye for layout. Layout Uniformity (LU) is a structural met-
ric that gives a quick handle on one important aspect of visual layout. It was
devised as a more practical and simplified
replacement for Layout Complexity. (See side-
bar, Other Yardsticks.)

Layout Uniformity measures only selected
aspects of the spatial arrangement of interface
components without taking into account what
those components are or how they are used; it
is neither task sensitive nor content sensitive.
As the name suggests, this metric assesses the
uniformity or regularity of the user interface
layout. Layout Uniformity—or LU—is based
on the rationale that usability is hindered by highly disordered or visually chaotic
arrangements. The influence of regularity on usability is probably not terribly
large, but it is one factor. Complete regularity is not the goal, however. Too much
uniformity not only can look unappealing but also can make it harder for users to
distinguish different features and different parts of the interface. We can expect
that moderately uniform and orderly layouts are likely to be the easiest to
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VISIBILITY RULES

understand and to use. Layout Uniformity is defined as

B (N, +N,+N,+N,+N,+N,)-M
LU-100-(1— 5N

where
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N, = total number of visual components on screen, dialogue box,
or other interface composite

Ny, N,, N, N, N, and N, are, respectively, the number of different heights, widths,
top-edge alignments, left-edge alignments, bottom-edge alignments, and right-
edge alignments of visual components. M is an adjustment for the minimum num-
ber of possible alignments and sizes needed to make the value of LU range from 0
to 100 (note the “ceiling” function, [ ], which means the smallest integer preater
than the enclosed value):

M=2+2-|_2m_,

Layout Uniformity goes up when visual components are lined up with one
another and when there are not too many different sizes of components. The role
of Layout Uniformity can best be appreciated by example. In Figure 17-1 are three
alternative layouts for a dialogue box. The widgets are left blank because Layout
Uniformity does not care what the components are or do. For the layout with no
consistency in size or position (Figure 17-1a), LU = 0%, as expected; likewise, for
the campletely uniform layout (Figure 17-1¢), LU = 100%. Neither one of these is
typical of good user interface designs. The intermediate design (Figure 17-1b) is
more typical of real dialogue layouts, with LU = 82.5%, which, in our experience,
is quite acceptable.

To compute Layout Uniformity, some rules of thumb are needed for determin-
ing what counts as a visual component and how to judge when components are
aligned with one another. These counting rules are discussed in the sidebar,
Counting Components.

As a structural metric concerned only with appearance, Layout Uniformity
should not be given undue wei ght in evaluating designs. It can, however, be useful
to the designer who lacks an eye for layout to know when a visual arrangement

(2) )

FIGURE 17-1 Layout Uniformity illustrated.
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VISUAL COHERENCE

might be improved. A review of well-designed
dialogues suggests that, in general, a value of
LU anywhere between 50% and 85% is proba-
bly reasonable, other things being equal. Out-
side that range, the designer may want to do
some thoughitful shuffling of the visual compo-
nents to make the layout either a little more or
a little less uniform.

A well-designed screen or window “hangs together.” A good nested set of dialogue
boxes collects in one place all those things you think of together and keeps the less
related things apart. Like a good filing system, a well-structured user interface
makes it easy to find things because related things are consolidated and unrelated

COUNTING COMPONENTS

things are separated. This is just the Structure
Principle in operation. Visual Coherence (V()
measures how well a user interface keeps
related things together and unrelated things
apart. More specifically, it is a semantic or con-
tent-sensitive measure of how closely an
arrangement of visual components matches the
semantic relationships among those compo-
nents. Based on the principle that well-
structured interfaces group together compo-
nents that represent closely related concepts,
Visual Coherence reflects important and fun-
damental aspects of user interface architecture
that strongly affect comprehension, learning,
and use.

Visual Coherence extends to user inter-
faces the well-established software engineering
metric of cohesion (see sidehar, Cohesion),
which gauges how closely interrelated are the
contents of software units. A strict application
of cohesion to dialogue boxes or other user
interface composites would be simplistic since
the classic notion of cohesion does not take
into account the way component parts are

‘arranged or grouped, only whether they are

present or not. Determining which features to
place on a given interaction context 1Is, of




course, one design consideration, but, for the
more challenging questions regarding specific
layout and visual arrangement of components,
the broader notion of Visual Coherence is
needed.

For example, the two dialogue box designs
shown in Figure 17-2, used in research on
Visual Coherence, group visual components
very differently by using empty space, lines,
boxes, and other visual techniques to define
visual groups, The overall Visual Coherence of
each design depends on the semantic related-
ness among the features or components con-
tained or enclosed within each of its visual
groups.

To be able to evaluate Visual Coherence,
we have to be able to look at any two visual
elements on the interface and determine
whether or not they are closely related seman-
tically. We can do this in more than one way,
but for now let us imagine we have a table that
we can use to determine whether a particular
pair of elements are sufficiently closely related

Essential Usability Metrics Suite

COHESION

to justify putting them in the same visual grouping on the user interface.

Visual Coherence for any particular visual grouping is simply the ratio of the
number of closely related pairs of visual elements to the total number of enclosed
pairs. We compute this ratio for the innermost visual groups, and then we just
repeat the same thing for the next level outward, until we have covered the com-
plete interaction context. In determining what is related to what at outer levels, we

toPrint - Reppap

FIGURE 17-2 Same problem, different Visual Coherence.
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may end up comparing visual groups to other visual groups or to simple visual
components grouped at that Jevel,

Total Visual Coherence of a design for an interaction context is computed by
summing recursively over all the groups, subgroups, and so forth, at each level of
grouping:

2.6

VC=100- vk
YN (N, -1)/2
vk

with

Gy = ERL;‘

Wil iwf
where

N, = number of visual components in group k
BJ.]. = semantic relatedness between components i and j in group k,
0<R, <1

In practice, semantic relatedness can be simplified to just two values: R ;=1 if
components i and j belong to the same semantic cluster and are, therefore, sub-
stantially related; R, = 0, otherwise. This for-
mulation reduces the calculations to counting
the substantially related pairs and appears to
work quite well in discriminating real designs.
It has the correct behavior as a metric in that it
favors organizing user interface components
into subgroups, but only so long as those
groupings make sense—that is, enclosing sub-
stantially related components associated with
a cluster of closely related semantic concepts.

Semantic clusters, being invisible and
intangible, must be discovered by the designers. Fortunately, this process of con-
cept sorting need only be done once for a given project. The starting point is the
glossary, domain object model, entity model, or data dictionary for the applica-
tion. A good domain object model is probably the best starting point since the
domain classes, their methods, and their attributes define an overview of the
semantic organization associated with a given application [Constantine, 1997el.

Each of the concepts in the problem domain, from whatever source, is written
onto a separate index card. The concepls are then sorted into clusters of closely
related terms using a card sort or affinity clustering technique such as that
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described in Chapter 4. If desired, the clustering task can be completed collabora-
tively, or several people can complete the task and then discuss and resolve differ-
ences in their clusters. Including one or more users among the sorters is desirable.
Once the semantic clustering is complete, each cluster can be given a name or
heading and the whole collection converted to a list.

To evaluate Visual Coherence, the list of concepts is scanned fo determine
with which concept each visual component or group is most closely related. If two
components or groups are both determined to be most closely related to concepts
in the same cluster, then they are considered to be substantially related and are
assigned an R;; = 1. If they are associated with concepts from different clusters,
then R, ; = 0. For a finer-grained measure, components that are closely associated
with concepts in separate but related semantic clusters can be assigned an inter-
mediate value for R, .

Ultimately, it should be possible to derive semantic clusters directly from a
complete domain object model, with the strength of semantic relationship based
on the nature of the object relationship, such as superclass-subclass, method-of,
attribute-of, and so forth. Realization of an object-oriented version of Visual Coher-
ence is under way.

METRICS IN PRACTICE

An important factor in the effectiveness of any metrics initiative is how the num-
bers are put to use. Utilized inappropriately, metrics can take on an exaggerated
significance and may come to dominate design decisions. For example, the effect
of immediate feedback on design quality has been investigated at the University of
Technology, Sydney [Noble and Constantine, 1397]. Some design metrics can be
computed automatically within a visual development tool for user interface lay-
out. Given instant numeric feedback on their layouts, designers can sometimes
unconsciously work to maximize their scores rather than derive the best design.
The result can be good-looking numbers but poorer interfaces when all factors are
taken into account.

The technique of dynamic metric visualization [Noble and Constantine, 1997]
was devised to provide “live” feedback during user interface layout without lead-
ing the designer astray through a tyranny of numbers. Instead of metrics values
displayed numerically or graphically, the designer is shown the underlying basis
for the metric of interest. For example, the paths representing enacted use cases
can be displayed overlaid on the user interface layout. The designer sees how the
lengths of these path lines are affected by the placement of visual components.
Tasks that are more frequent are represented by thicker path lines, visually
reminding the designer of the relative importance of different use cases. Similarly,
the basis of Layout Uniformity can be communicated through light grid lines
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