OLAP QUERIES

ı

Online Analytic Processing OLAP

OLAP

- OLAP: Online Analytic Processing
- OLAP queries are complex queries that
 - Touch large amounts of data
 - Discover patterns and trends in the data
 - Typically expensive queries that take long time
 - Also called decision-support queries
- In contrast to OLAP:
 - OLTP: Online Transaction Processing
 - OLTP queries are simple queries, e.g., over banking or airline systems
 - OLTP queries touch small amount of data for fast transactions

Select salary From Emp Where ID = 100;

OLTP vs. OLAP

On-Line Transaction Processing (OLTP):

 technology used to perform updates on operational or transactional systems (e.g., point of sale systems)

On-Line Analytical Processing (OLAP):

 technology used to perform complex analysis of the data in a data warehouse

OLAP is a category of software technology that enables analysts, managers, and executives to gain insight into data through fast, consistent, interactive access to a wide variety of possible views of information that has been transformed from raw data to reflect the dimensionality of the enterprise as understood by the user.

[source: OLAP Council: www.olapcouncil.org]

OLAP AND DATA WAREHOUSE

OLAP AND DATA WAREHOUSE

- Typically, OLAP queries are executed over a separate copy of the working data
 - Over data warehouse
- Data warehouse is periodically updated, e.g., overnight
 - OLAP queries tolerate such out-of-date gaps
- Why run OLAP queries over data warehouse??
 - Warehouse collects and combines data from multiple sources
 - Warehouse may organize the data in certain formats to support OLAP queries
 - OLAP queries are complex and touch large amounts of data
 - They may lock the database for long periods of time
 - Negatively affects all other OLTP transactions

OLAP ARCHITECTURE

EXAMPLE OLAP APPLICATIONS

Market Analysis

 Find which items are frequently sold over the summer but not over winter?

Credit Card Companies

- Given a new applicant, does (s)he a credit-worthy?
- Need to check other similar applicants (age, gender, income, etc...) and observe how they perform, then do prediction for new applicant

OLAP queries are also called "decision-support" queries

MULTI-DIMENSIONAL VIEW

ANOTHER EXAMPLE

gender	age	accident
Male	27	3
Male	37	1
Male	37	0
Male	37	1
Male	49	2
Male	39	4
Male	43	0
Male	41	2
Male	49	1
Male	44	2
Male	43	3
Male	53	4
Male	60	0
Female	26	0
Female	39	0
Female	45	2
Female	41	2
Female	39	1
Female	37	0
Female	43	1

APPROACHES FOR OLAP

- Relational OLAP (ROLAP)
- Multi-dimensional OLAP (MOLAP)
- Hybrid OLAP (HOLAP) = ROLAP + MOLAP

RELATIONAL OLAP: ROLAP

- Data are stored in relational model (tables)
- Special schema called Star Schema
- One relation is the fact table, all the others are dimension tables

CUBE vs. STAR SCHEMA

ROLAP: EXTENSIONS TO DBMS

- Schema design
- Specialized scan, indexing and join techniques
- Handling of aggregate views (querying and materialization)
- Supporting query language extensions beyond SQL
- Complex query processing and optimization
- Data partitioning and parallelism

SLICING & DICING

Dicing

- how each dimension in the cube is divided
- Different granularities
- When building the data cube

Slicing

- Selecting slices of the data cube to answer the OLAP query
- When answering a query

Dicing Location by state

Dicing Time by day

SLICING & DICING: EXAMPLE 1

Dicing

Slicing

Slicing operation in ROLAP is basically:

- -- Selection conditions on some attributes (WHERE clause) +
- -- Group by and aggregation

SLICING & DICING: EXAMPLE 2

SLICING & DICING: EXAMPLE 3

DRILL-DOWN & ROLL-UP

ROLAP: DRILL-DOWN & ROLL-UP

```
SELECT dealer, year, SUM(price)

FROM (Sales NATURAL JOIN Autos) JOIN Days ON date = day

WHERE model = 'Gobi' AND

color = 'red' AND

(year = 2001 OR year = 2002)

GROUP BY year, dealer;
```

Drill-down

Roll-up

```
SELECT dealer, month, SUM(price)
FROM (Sales NATURAL JOIN Autos) JOIN Days ON date = day
WHERE model = 'Gobi' AND color = 'red'
GROUP BY month, dealer;
```

MOLAP

- Unlike ROLAP, in MOLAP data are stored in special structures called "Data Cubes" (Array-bases storage)
- Data cubes pre-compute and aggregate the data
 - Possibly several data cubes with different granularities
 - Data cubes are aggregated materialized views over the data
- As long as the data does not change frequently, the overhead of data cubes is manageable

Every day, every item, every city

Every week, every item category, every city

MOLAP: CUBE OPERATOR

MOLAP & ROLAP

- Commercial offerings of both types are available
- In general, MOLAP is good for smaller warehouses and is optimized for canned queries
- In general, ROLAP is more flexible and leverages relational technology
- ROLAP May pay a performance penalty to realize flexibility

OLTP vs. OLAP

	OLTP	OLAP
User Function DB Design Data View Usage Unit of work Access Operations # Records accessed #Users Db size Metric	 Clerk, IT Professional Day to day operations Application-oriented (E-R based) Current, Isolated Detailed, Flat relational Structured, Repetitive Short, Simple transaction Read/write Index/hash on prim. Key Tens Thousands 100 MB-GB Trans. throughput 	 Knowledge worker Decision support Subject-oriented (Star, snowflake) Historical, Consolidated Summarized, Multidimensional Ad hoc Complex query Read Mostly Lots of Scans Millions Hundreds 100GB-TB Query throughput, response

Source: Datta, GT

OLAP: SUMMARY

- OLAP stands for Online Analytic Processing and used in decision support systems
 - Usually runs on data warehouse
- In contrast to OLTP, OLAP queries are complex, touch large amounts of data, try to discover patterns or trends in the data
- OLAP Models
 - Relational (ROLAP): uses relational star schema
 - Multidimensional (MOLAP): uses data cubes