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Introductory Optics

Introduction
These notes introduce the physical concepts and mathematical models used to analyze image-
forming optical systems.  An image is a spatial distribution of light that is geometrically similar
to the pattern of light emitted or reflected from an object at some other place. An understanding
of optics aids in understanding the relationship between objects in the three-dimensional world
and the two-dimensional digital images used as the starting point in computer image analysis.  It
also help us to understand how our eyes work and how our brains use the information from our
eyes to reconstruct the three-dimensional world we perceive.

Our emphasis is not on designing optical systems, which is a rather involved and complicated
process, but on understanding how optical systems work.  In particular, we will investigate
several simple models for imaging systems, discuss the conditions under which each model is
valid, and show, for each, how to calculate the image’s size, sharpness, and illuminance (how
much light forms the image).  These are the quantities of most use to  people working with
computer graphics, computer vision, and machine vision systems.

Pinhole Optics
Many useful results can be obtained by using the simplest of all optical models – the pinhole
optics model.  Image formation in this model is described by the equations describing the
pinhole camera, in which an inverted image is formed on an image plane by a small hole in an
opaque card, Figure 1.

Object Pinhole Image

Figure  1. A Simplified Pinhole Camera

The image is a consequence of the fact that light travels in straight lines.  The only light striking
a point in the image plane comes from a single point on the object – the point colinear with both
the image point and the pinhole.  As we will show, this is sufficient to form an image that is
geometrically similar to the object.
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Construct a cylindrical coordinate system r,z,θ with its origin at the center of the pinhole,
Figure 2.  The z-axis is also called the optical axis.  The direction of the optical axis arbitrary
and it is usually selected to exploit some symmetry in the problem or to make some particular
object point or image point lie on the z axis.
 

r

θ
z

P

Optical 
Axis

Figure 2.  A Pinhole

Assume, for now, that the object lies in an object plane perpendicular to the optical axis.  Light
rays emanate from it along straight lines in all directions.  Some of the rays will pass through the
pinhole and illuminate the image plane, also assumed to be perpendicular to the optical axis.
This last assumption is not essential but it is convenient so it is usually made in introductory
optics.  We will follow the light rays emanating from an arbitrary object point PO that is not on
the optical axis and see where they strike the image plane.  The object point and the optical axis
define a unique r-z plane in which the angle, θ, is constant: θ=θO.  The ray from PO through
the center of the pinhole is a straight line connecting two points in this plane; hence, all points on
the ray lie in the plane.  Thus all points along the ray, including the point  PI where it intersects
the image plane, will have the same value of θ.  We can therefore confine our analysis to the
plane θ=θO, Figure 3, and the ray can be described as a function of r  and z only: r=r (z).

Pinhole

Optical
Axis

Object Image

z
r

PO

PI

θO

Figure 3.  A light ray that passes through the pinhole
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In the θ=θO plane the equation of the ray is

′ = = −r
dr

dz

R

S
O

O

(1)

where RO is the radius of the object point in the object plane located at z=–SO.  The sign is
negative because the ray has to be moving towards the axis so that it can pass through the
pinhole, as shown in Figure 3.  The solution of Equation (1) is:
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S
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O

O

O

= − + = − (2)

where the constant of integration is C=0 since the ray passes through the pinhole at r=z=0.
This ray strikes the image plane, z=SI, at the radius

r R
R

S
SI

O

O
I= = − (3)

This can be obtained from equation (1) or it can be derived from the ratio of sides of similar
triangles in the object and image spaces, Figure 4.  Remember that this Figure only shown what
is happening in the θ=θO plane, as shown in Figure 3.

Optical
Axis

Object Pinhole Image

θ
RO

RI

SO SI

Figure 4  Geometry of a Pinhole Image

The linear magnification, the ratio of image size to object size, depends only on the ratio of
image distance to object distance

M
R

R

S

S
I

O

I

O

= = − (4)

The minus sign in Equation (4) tells us that the pinhole camera produces an inverted image. In
the optics literature the minus signs are frequently omitted from equations (3) and (4), making r
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positive in both the object and image planes.  In that case the image inversion is implicit.  The
reason for the sign uncertainty is that our analysis began with a polar coordinate system, in which
the r  coordinate is always positive  However, when we confined our analysis to a plane of
constant θ, we began using the cartesian coordinates of that plane in which negative values of r
are both proper and necessary.  Be careful when you are reading the optics literature, this
distinction can cause confusion.

Each point in the object plane images into a point in the image plane that has the same θ
coordinate and an r  coordinate that is scaled by the ratio –SI/SO .  Thus images are
geometrically similar to objects; the pinhole images perfectly, without geometric distortion.  The
area of the image is therefore M2 times that of the object.  Similarity is guaranteed only when
the object and image planes are parallel as we assumed.  When they are not parallel, the object
and image are no longer necessarily similar.  We will discuss the general case later.

A consequence of perfect imaging is that off-axis objects form perfect off-axis images, Figure 5.

Optical
Axis

Object

Pinhole

Image

Obstacle

Figure 5. An off-axis object forms an off-axis image.

Thus, a lateral shift of the pinhole allows imaging without geometric distortion even though the
camera cannot be placed directly in front of the object, Figure 6.  This optical arrangement is
often used in applied machine vision applications when it is necessary to fit a lot of equipment
into a cramped space.  It is also useful for making perfect (non-distorted) images of large objects
that cannot be centered on the optical axis.

The focal properties above were derived for meridional rays.  Those are rays which travel in
planes of constant θ.  All meridional planes include the optical axis.  Rays that do not travel in
planes of constant θ are called skew rays.  They do not intersect the optical axis, cannot pass
through the pinhole, and therefore do not contribute to the image in a pinhole camera.
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Figure 6. An example of off-axis imaging.

Perfect imaging implies perfect geometric similarity between objects and images, not perfectly
sharp images.  If the pinhole diameter is d, the light rays from an object point on the optical axis
illuminate a circular area of diameter

d d
S S

S
d Mb

O I

O

= + = −( )1 (5)

The image is unsharp and db is the on-axis blur circle size, which is always larger than the
pinhole diameter, d;  see Figure 7.  An off-axis object point has a blur ellipse with major axis
d(1–M) and minor axis d(1–M)cosθ.  This blur is the practical reason that pinholes are almost
never used to form images for computer or machine vision applications.

φ

Diameter d

Object Pinhole Image

Optical Axis

SO SI

d
SO + SI

SO

Diameter

Figure 7  Pinhole Camera Blur
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Pinhole Optics Depth of Field
With pinhole optics, the image can be formed at any distance along the optical axis, z=SI>0.
The magnification and image blur are determined uniquely by the relative sizes of the object and
image distances, SO to SI. 

 Also, since the image blur does not vary rapidly with small shifts in object or image location, the
assumption that the object is planar can be relaxed.  Notice, too, that the object and image are
totally equivalent; they can be interchanged.

Pinhole Optics Illuminance
The axial image illuminance for the pinhole camera, EI, is the total flux into an image region,
such as the blur circle, divided by the area of that region,

A
d S S

SI
O I

O

=
+( )π 2 2

24
(6a)

The total flux is the product of three terms: the object’s axial luminance LO, the area of the
object that emits light into an image point,

A
d S S
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O I

I

=
+( )π 2 2

24
(6b)

and the solid angle subtended by the pinhole at the object

ΩP
O

d

S
= π 2

24
(6c)

Note that the similarity between Equations (6a) and (6b) is a direct consequence of the
equivalence and interchangeability of the object and image.  Combining Equations (6), the
illuminance of an on-axis image point is

E
L A

A

d L

SI
O O P

I

O

I

= =Ω π 2

24
(7)

Now we consider the illuminance of an off-axis image point due to the light received from the
corresponding off-axis object point, as shown in Figure 6.  Denote the object luminance in the
direction of the pinhole by L(φ).  Figure 6 shows that the pinhole’s projected area decreases by a
factor of cosφ, the distance from the object point to the pinhole increases from SO to SO/cosφ,
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the distance from the pinhole to the image point similarly increases from SI to SI/cosφ, and the
pinhole solid angle is

ΩP
O

d

S
= ( )

π φ
φ

2

2 24

cos

/ cos
(8)

The image illuminance is

E
L A

A

d L

SI
O P

I I

= =( ) ( )cosφ π φ φΩ 2 3

24
(9)

Note that the areas AO and AI scale by the same geometric factor so their ratio remains the same
as in the axial case – the difference between Equations (7) and (9) is due completely to the
change in the solid angle subtended by the pinhole, Equation (8).

If the object is a diffuse emitter, then it’s luminance is described by, L(φ)=LOcosφ (Lambert’s
law).  The image illuminance becomes

E
d L

SI
O

I

= π φ2 4

24
cos

(10)

Because the angles are usually small, the factors of cos3φ and cos4φ in Equations (9) and (10) can
often be neglected in machine vision optical calculations.

Thin Lens Optics
The pinhole optical system has the advantages of simplicity, lack of geometric distortion, and
excellent depth-of-field (the blur changes slowly with changes in object or image distance).  The
major, and usually limiting, disadvantages are low image illuminance – a consequence of
requiring that all image rays pass through a small pinhole, and a large blur circle – which can
never be smaller than the pinhole.  Enlarging the pinhole to increase the illuminance significantly
increases the blur size.  The usual solution is to replace the pinhole with a lens, an optical
element with both a larger solid angle (greater illuminance) and a smaller blur circle than the
pinhole.

As with the pinhole camera, we begin with a mathematical model for the lens and examine how
to use the model.  In lens models, we make an assumption that adequately describes systems
made of simple glass lenses in air: light rays travel in straight lines except for when they are
passing through lenses.  Real lenses come in a variety of shapes and and a variety of lens models
are used to analyze them.  Where possible we prefer to use the mathematically simplest model,
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the rotationally symmetric thin lens, which is appropriate for round lenses whose thickness is
small compared with the overall length of the optical system.

The thin lens is represented by a single plane perpendicular to the optical axis.  In this plane,
called the principal plane, a light ray is abruptly deviated such that its path is continuous but its
slope r'  changes by an amount proportional to the radius at which it strikes the plane.  The
constant of proportionality is –1/f, where f is a physical property of the lens called its focal
length,

∆ ′ = −r
r

f
(11)

When f is positive the lens converges meaning that light rays are deviated toward the optical
axis; a negative lens diverges the rays, Figure 8.

f>0 f<0

Principal Plane Principal Plane

Optical
Axis

′ r = r0′ r = r0 −
r

f
′ r = r0 +

r

f′ r = r0

Figure 8  Converging and Diverging Lenses

We begin the analysis of the thin lens by selecting a coordinate system with its origin at the
center of the principal plane.  Object space is defined as the region z<0 which contains the
object; the image is in the image space region z>0.  In analyzing the optical properties of the
thin lens, we will consider meridional rays first.  Recall that in the thin lens model, rays travel in
straight lines in both object and image space. We can represent them by linear equations in both
regions.

r z A B z z

r z A B z z
O O O

I I I

( ) ,

( ) ,

= + <
= + >

0

0
(12)

Using Equations (11) and (12) and requiring that r  be continuous at z=0, we obtain the
equations
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Thus, if we know the values AO and BO, which describe the ray in object space, the values of AI

and BI, which describe the ray in image space can be easily calculated using Equations (13).
Values for the AO and BO are usually found from the ray's initial conditions in the object plane,
z=–SO.  

The ray equations are linear so superposition applies:  if r α(z) and r β(z) are two rays with
equations rαΟ(z) and r βΟ(z) in object space and rα Ι(z) and r β Ι(z) in image space,
respectively, then the ray rΟ=rαΟ+rβΟ in object space has as its image space continuation the
ray r Ι=rα Ι+rβ Ι.  Note that although both rα and r β are meridional rays lying in planes of
constant φ, they  need not lie in the same φ plane.

From Equation (11), the ray deviation is proportional to radius. This causes all rays which enter
the lens parallel to the optical axis to pass through a single point, the focus, located on the
optical axis a distance f from the principal plane, Figure 9.

   

′ r 2 =
−r2

f

fPrincipal Plane

Focus

Optical
Axis

r1

r2
′ r 1 =

−r1

f

Figure 9  The Thin Lens Focal Point

Similarly, a collection of parallel rays striking the lens at some angle φO with respect to the
optical axis will be focused at a point with radius r=ftanφO in the plane z=f.  If the angle φO

is varied, the loci of all resulting points of focus describe a plane perpendicular to the optical axis
called a focal plane, Figure 10  Since lens are symmetrical, each has two such focal planes
symmetrically disposed about the principal plane.

One consequence of linearity, Equations (12), is that any two non-parallel rays form a basis set
and any arbitrary ray can be formed from a linear combination of the two.  We will examine the
basis set formed by meridional rays, called principal rays.  Consider an object located at
z=–SO in an object plane perpendicular to the optical axis, Figure 11.  One principal ray strikes
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the principal plane parallel to the optical axis and then passes through the image space focal
point.  The other passes through the object space focal point and then leaves the lens parallel to
the optical axis.  The intersection of these two rays forms an image point with radius r= –RI at
a distance  z=SI from the lens.  Any ray leaving the object point that strikes the principal plane
can be expressed as a linear combination of these two rays, so all rays from the object point are
focussed at the image point.  For each point in the object plane there is a corresponding point in
the image plane where its rays are focussed.  The lens is perfectly symmetric so the same results
are obtained if object and image are interchanged.

   

f

Principal Plane

Optical
Axis

Focal Plane

f tanφO

φO

Figure 10. Rays that are parallel entering the lens converge in the focal plane.

f f

Object
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Image
Plane

Focal
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Focal
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Principal
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RO

RI

SO SI

Figure 11  Image Formation in the Thin Lens

______________________________________________________________
Example 1
Consider the example shown in Figure 10.  Parallel rays strike the principal plane at the angle
φ=φO.  The ray that intersects the principal plane at the axis has radius zero at the principal plane
so it is not, Equation 11.  Thus, it continues on a further distance f along the z axis until it
strikes the focal plane at a radius r=ftanφO and slope r'=tanφO, as shown.  Now any other of
the parallel incident rays can be formed from the linear combination of this central ray and a
second ray which is the principal ray that strikes the principal plane parallel to the optical axis
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and passes through the axis at the object side focal plane.

For example, the ray that strikes the principal plane at radius r=rO and can be decomposed into
the two rays r1(z) and r2(z) whose values before striking the principal plane are:

r z z z

r z r r z
O

O

1

2

0

0 0

( ) tan ,

( ) ( ) ,

= <
= = <

φ

Using Equation (11) and requiring that the rays be continuous at z=0, we obtain the ray values
after exiting the principal plane:

r z z z

r z r z
r

f
z

O

O
O

1

2

0

0

( ) tan ,

( ) ,

= >

= − >

φ

Plotting the sum of these two functions r(z)=r1(z)+r2(z) for various values of rO produces
the bundle of rays shown in Figure 10.
______________________________________________________________

The focal properties of the thin lens were derived for meridional rays, which travel in planes of
constant θ.  The lens has rotational symmetry so this analysis applies to rays that travel in all
such planes.  A skew ray can be constructed as a linear combination of meridional rays.
Therefore all rays from the object, including skew rays, are focussed at the image point.  The
assumption of constant θ can therefore be relaxed.  With no loss of generality we will continue to
show ray diagrams of meridional rays since they are much easier to draw and understand.

Principal
Plane

Object
Plane

Image
Plane

Focal
Plane

Focal
Plane

RI

SO SI

f f

RI

RORO

Principal
Plane

Figure 12.  Triangles in Object and Image Spaces.
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The principal rays form two sets of similar triangles, one each in object and image spaces,
Figure 12.

Using the ratios of sides of similar triangles, the linear magnification, M, and the image
distance, SI, can be calculated as functions of the object distance, SO, and lens focal length, f

M
R

R

f

S f

S f

f
I

O O

I= =
−( ) =

−( )
(14)

1 1 1
f S SO I

= + (15)

Equation (15), called the lens equation, is the basis of all optical system design.

Note that the ray that passes through the center of the lens in Figure 10 is undeviated: since r=0
at the principal plan, ∆r'=0 by Equation (11).  Thus the magnification M for the thin lens is
identical to the pinhole, Equation (3).  This can be verified using Equations (14) and (15).  Note
that the magnification is again negative because RO and RI will have opposite signs, as will SO

and SI.  By the same arguments used in the pinhole optics case, objects and their images are
geometrically similar in the thin lens case, as long as the object and image planes are parallel.
Also, the lateral shift arrangement, Figures 6 and 7, can be used to provide distortion-free
imaging with thin lenses.  However, unlike pinhole optics, a lens does not allow arbitrary choice
of both SO and SI: only when they satisfy the lens equation, Equation (15), will the image be
sharply focussed.

 Most optical quantities can be calculated from Equations (14) and(15) so the optical properties
of the thin lens are completely determined by the locations of three planes: the two focal planes
and the principal plane.  These can be measured by simple experiments.  Rays parallel to the
optical axis are sent into the lens from both directions.  The planes in which they focus are the
focal planes and the principal plane lies halfway between.  In practice, the principal plane is
usually near the geometric center of a lens.

______________________________________________________________
Example 2
Consider the case of a 25mm lens that produces a focussed image of an object at infinity (very
far away from the camera).  The image is located at a distance f (25mm) from the principal
plane.  If, instead, the lens is used to form an image of an object placed 100mm from the
principal plane, Equation (15) tells us that the image location will be:
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The image plane has moved 8.3mm (33.3mm – 25mm) farther from the lens.  Extender tubes are
often inserted between the lens and camera body to allow lenses to focus on nearby objects.  The
linear magnification of this optical arrangement will be, from Equation (3), M=–0.33.  The
minus sign means that the image is inverted.
______________________________________________________________

Thin Lens Depth of Field 
In the pinhole lens, the image plane is merely a tool for calculating optical properties: the

image blur does not change greatly as the image plane is moved.  In the thin lens model, the
image is formed by the intersection of non-parallel rays so the blur can vary significantly with
small movements of the image plane.  The focal length is a constant for a lens.  Thus, from
Equation (15), an object placed on the optical axis at a point z=– SO', closer to the lens than
SO, forms an image in the plane at SI' which is farther from the principal plane than SI; if

′ <S SO O  then ′ >S SI I .  The rays that converge at the plane SI' have a diameter C when

passing through the plane SI.  Similarly, if ′ >S SO O  then ′ <S SI I  and light rays from a point on

the optical axis at SO' form an image at SI' and begin to diverge again, forming a circle of
diameter C at the image plane, see Figures 13a and 13b.
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Focal
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Optical
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Plane

Focal
Plane

Focal
Plane

Principal
Plane

Image
Plane

D

Diameter
C

f f
SO SI

′ S O ′ S I
Figure 13a).  Blur from an Object too Close to the Lens.
Figure 13b)  Blur from an Object too Far from the Lens.

In these Figures, the lens diameter, D has been introduced.  The blur size will be seen to be a
function of this diameter.  In most lenses, this is just the diameter of the glass lens elements or of
the variable diameter aperture built into many lenses.  The aperture size is often expressed as a

dimensionless F number1,

1 Instead of F number, the numerical aperture is sometimes used in the optics literature: nsinφ, where n is the
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N
D

f
= (16)

Thus, a variable aperture lens that is set to f/5.6 (the arrow points to 5.6 on the barrel of the lens)
has F number N=1/5.6=0.179.

The diameter of the blur circle can be found using similar triangles:

C
D S S

S
S S S S

C
D S S

S
S S S S

I I

I
O O I I

I I

I
O O I I

=
′ −( )

′
′ < ′ >

=
− ′( )
′

′ > ′ <

,

,

 and 

 and 

These can be combined into a single equation,

  
S S

C

D
S S S S SI I I I I I I= ′ ±



 = ′ ± ′ ′ = ′1 ∆ ∆  or  m (17)

where

∆S S
C

D
S

C

DI I I= ′ ≈

and where the + and – signs represent the cases of the object too close and too far, respectively.

From Equation (17) we can locate the corresponding object planes that bound the region within
which the object will form an image with blur diameter less than C,

  
S S SO O Omin,max

= m ∆ (18a)

where

∆ ∆
S

S

MO
I= −

(18b)

Equations (18) apply only when M can be considered to be constant.  This occurs in the limit

index of refraction outside the lens and φ is the cone angle of the ray that strikes an outermost edge of the lens.  The

reasons for having two measures  are beyond the scope of these introductory notes.
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∆S

S

C

D
I

I

<< <<1 1  or  

This approximation is usually satisfied in practical computer or machine vision systems.

______________________________________________________________
Example 3
As an example, consider a 50mm lens with F number N=D/f=1/2.8 used to form an image
with magnification M=-0.1 on a camera sensor whose width is 2RI =8mm wide and which has
400 pixels per row.  The field of view of the camera is 2RO,max=2RI,max/M=80mm, the pixel
width is 8mm/400=20µm, and the lens diameter is D=fN=17.9mm.  Thus if we select a design
which produces a blur circle with the same diameter, then C/d=20µm/17.9mm=.0011, validating
the approximation C/d<<1.  The corresponding range of the object distance is 

′ = ±



 = −



 ±





= ±

S S
C

DM
f

M

M

C

fNMO O 1
1

1

550 6 2. mm

This 12.4mm band within which everything is considered to be in focus is called the depth of
field.  It is linearly proportional to the blur circle size, C, and inversely proportional to the lens
F number, N.

If an exact solution for SO' is required, rewrite Equation (15), noting that f is constant:

1 1 1 1 1
f S S S SO I O I

=
′

+
′

= +

This equation can be solved for two values of SO':

1 1
1 1

1

10′
= − −

±





























S S M C

D
O O

(19a)

where

M
S

S
I

O
0 = −

(19b)
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is the linear magnification at perfect focus.  In the limit C/D<<1, Equations (19) reduce to
Equations (18).
______________________________________________________________

Parallel and Tilted Object and Image Planes
So far we have only considered the case where the object and image planes are parallel to the
principal plane and to each other.  In fact, this parallel plane assumption is not even necessary –
we just used it to establish that there are two complementary planes, the object and image planes,
with the property that every point in one images into a unique point in the other.  In this section
we will establish that these complementary planes exist, even when not parallel and we will
examine the geometric nature of the imaging relationship between pairs of planes.

A point is specified by its (r ,θ,z) coordinates.  We showed previously that each point in object
space (RO,θO,SO) images into its unique point in image space (RI,θO,SI) where the variables
are related by Equations (4), (14), and (15).  The two points will have the same angular
coordinate θO because that is the only condition that guarantees there will always be a
meridional ray connecting the object and image point.  If we restrict our analysis to only those
object points lying in the plane of constant SO, we can see that all of the corresponding image
points lie in the plane of constant SI – this is just the case of parallel object and image planes.
Thus each object point (RO,θO,SO) images into the image point (MRO,θO,MSO) where M , the
linear magnification, is constant for all points since they all share the same SO and SI values.
This is sufficient to establish that the object and its image are geometrically similar: planar
polygons image into similar planar polygons, parallel lines in the object form parallel lines in the
image, lines in the image intersect if and only if they intersect in the object, ordering of vertices
and edges is invariant between object and image, etc.

Principal
Plane

Object
Plane

Image
Plane

Optical
Axis

This triangle lies
in the plane P

Figure 14. Lines in the object plane image into lines in the image plane.

You may wonder how we can be sure that object lines map into lines in the image and not, for
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example, points or curves.  This can be seen by considering the object to be a line in the object
plane and by looking only at those rays which pass through the origin at the center of the lens’
principal plane, Figure 14.

The object line and the origin in the principal plane define a plane P in space.  Every object
point lies in P.  But every image point lies on the ray connecting the corresponding object point
with the origin and a line connecting two points in a plane lies within the plane so every image
point lies in P.  Thus every image point lies in the intersection of two planes, P and the image
plane, and therefore the image is a line.

Figure 14 can also be used to show that any two object points plus the origin form a triangle that
is similar to the triangle formed by the corresponding two image points and the origin.  This is an
alternative way to establish that objects and images are geometrically similar when the object and
image planes are parallel.

Now consider the case of a object plane tilted at some arbitrary angle.  Figure 15 shows a view of
the plane containing both the optical axis and the normal to the object plane.  In general, it is
necessary to rotate the entire system about the optical axis to put it into this configuration in
which the object plane projects into a line, as shown.  Again, we will examine the behavior of
meridional rays in this plane and use the fact that skew rays can be constructed from meridional
rays to generalize the results to three dimensions.  Look at the ray from a object point PO which
travels in the object plane toward the point PP where it intersects the principal plane and
deflects to pass through the image point PI.  The ray from any other object point that travels in
the object plane also passes through the points PO and PP and, thus, through PI as well.  Thus
every point in the tilted object plane images into a plane containing the points PP and PI.  This
is sufficient to establish that a tilted object plane images into a tilted image plane and that the
object, principal, and image planes intersect in a common line perpendicular to the optical axis.
Thus the normal to theimage plane also lies in the same plane as the optical axis and normal to
the object plane.  Tilting the object and image planes so they both intersect the principal plane in
the same line is sufficient to assure perfect focus from every point in the object plane into a point
in the image plane.

This last condition, called the Scheimpflug Condition, is used in computer and machine vision
applications to produce a sharply focussed image of a surface even when the optical axis cannot
be arranged normal to the surface, Figure 16.  Typically the camera is placed as close a possible
to the normal of the surface being observed.  Then the sensor and lens are tilted until the sensor
plane, the lens plane, and the surface intersect in a single line.
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PO
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Focal
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Optical
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Principal
Plane

Focal
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Figure 15. Titled object and image planes.

Imaged 
Surface

Sensor
Lens

Scheimpflug
Line

Obstruction

Figure 16. Tilted optics used to image perfectly using a tilted camera.

While the titled optics method can provide a perfectly focussed image of a tilted object plane,
that image will not necessarily be geometrically similar to the object.  From Figure 14 and the
text explaining it, we can see that while lines still image into lines, geometric similarity is
assured only when the object and images are parallel.  As a final comment, note that the
Schempflug condition is completely specified by the location of a single object point (the on-axis
point is usually used) and the line of intersection in the principal plane (the point on the line
which passes closest to the axis is usually used).

Three Dimensional Objects and Images
So far we have considered objects and images to be two-dimensional objects, although the planes
in which they lie need not be parallel.  This restriction is reasonable when applied to images
since all image sensors, including the eye, are two-dimensional devices.  Objects, however, are
generally three-dimensional so it will be useful to consider what happens when a three-
dimensional object is imaged by a thin lens.

At this point it will be useful to introduce a cartesian coordinate system with its z axis aligned
with the optical axis, its origin in the center of the principal plane, and the directions chosen so
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that z<- in object space and z>0 in image space.  The direction of the x axis is arbitray.  The
ray from a point PO in object space can be decomposed into meridional rays in the x-z and y-z
planes so the above analysis applies directly.  The point PO thus images with sharp focus into
the point PI

P x y zO = ( , , ) (20a)

P Mx My MzI = ( ), , (20b)

where

M
f

z f
f

z
=

−
=

−

1
1

1
(21)

Three-dimensional objects thus transform into sharply focussed three-dimensional image points,
forming a three-dimensional image.  This is only a virtual image – it doesn’t exist and we can’t
see anything unless we put some surface into image space to intercept the rays.  The resulting
real image on that two-dimensional surface is just a standard planar image so we know what to
expect – mostly blurred rays with a few sharply focussed ones that happen to have originated in
the corresponding object plane.

Equations (20) and (21) are the basis of a popular image analysis technique.  The light hitting a
known point PI=(x,y,z) in a known image plane must have originated from an object point
PO=(αx,αy,αz).  If one of the coordinates of the object point is known or can be guessed, the
other two can be calculated.  This analysis technique, although sometimes useful, is quite
limiting. We will look at a more powerful technique, the concept of a virtual three-dimensional
image.

Equations (21) show that the object and image spaces can be related by a transformation of
coordinates that is affine and expressible using homogeneous coordinates:

P TP P T PI O O I= = −, 1 (22a)

where the points are column m atrices of the form
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and T is the transformation matrix

T T= =

−



















−1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1/ f

(22b)

The fact that T is its own inverse is a consequence of the symmetrical nature of the thin lens.

______________________________________________________________
Example 4
The location and orientation of a lens are fixed.  For example, the lens is mounted in a port in the
side wall of an environmental chamber, Figure 16a.  Our goal is to form an image on a camera
sensor of the inside of the chamber in which three arbitrary points, A, B, and C are in sharp
focus.  In this example we show how to select the lens focal lengths and the sensor orientation
and location to achieve this goal.

 

A

B

C

Figure 16a. Schematic drawing of an enclosuse with a fixed lens.

The first step is to select a coordinate system.  As usual, place the origin at the center of the lens
with the z axis perpendicular to the lens plane (the chamber wall, in this case).  Next, find the
object plane containing the points A, B, and C.  Represent each point by the vector to it from
the origin

A B C= ( ) = ( ) = ( )x y z x y z x y zA A A B B B C C C, , , , , , , ,
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Calculate the normal to the plane

N A B B C C AO = ×( ) + ×( ) + ×( ) (23a)

Note, if this normal points in the z direction, then the object and image planes are parallel to
each other and to the principal plane, the case we already solved above.  If the normal is not
directed along the z asis we next calculate the angle about the optical axis of the projection of
the normal into the principal plane

θz

y

x
=

•
•

−tan 1
N

N
O N

O N

O

O

(23b)

It is important that this be done as a four-quadrant calculation: 0≤θz≤2π.

Now rotate everything in the problem by multiplying each point and vector by the rotation matrix

Rz −( ) =
−



















θ

θ θ
θ θ

z

z z

z z

cos sin

sin cos

0 0

0 0

0 0 1 0

0 0 0 1

(23c)

This has the effect of rotating the optics into the configuration of Figure 15.  We will assume this
has been done but will not change from the original notation for clarity.

The the equation for any point P in the plane is

P P NO O−( ) • = 0 (24a)

where PO is any known point in the plane (A, B, or C) and rotated values are used for all vectors.

The equation for any point in the lens principal plane is

P z P• = ⇒ =ˆ 0 0z (24b)

where ̂z is the unit vector in the z direction, the direction of the optical axis.  We also know that
normal has no x component and the intersection line has to point in the x direction as a
consequence of the rotation.
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Combining Equations (24), we obtain the equation for the line of intersection

y y yP N P O OO
y N A N A B C= •( ) = • = • ×( )ˆ

The intersection line has constant y value

yP
O

A B C
y N

= • ×( )
•( )ˆ

(25a)

and the point of closest approach to the optical axis is

PP P= ( , , )0 0y (25b)

The vector equation for the intersection line is

P P zP−( ) × =ˆ 0 (25c)

The on-axis object and image points  can be found from Equations (15) and (24a)

S SO I= ( ) = ( )0 0 0 0, , , , ,S SO I (25d)

where

S S
fS

S fO I
O

O

= •
•

=
−

A N
y N

O

Oˆ
, (25e)

Sharp focus is obtained by placing the camera sensor in the plane containing the points PP and SI .
As a final part of this example, let’s calculate the affine transformation between the tilted object
and image planes.

A three step process is used to transform a point PO expressed in the object plane coordiantes
(s,t) into an point PI  expressed in the image plane coordinates (u,v).  First, the transformation is
calculated between s,t coordinates and x,y,z coordinates
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(26a)

Next, the transformation is calculated between x,y,z coordinates and u,v coordinates

T S Rz x
P P

P

P

P

P P

I I
I I

I

I I

I

I

I
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y
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(26b)

Combining these results with Equation (22b), we obtain the complete transformation

P T TT P P PI I O O O I= =



















=



















, ,

s

t

u

v

0

1

0

1

(26c)

This transformation can be inverted to calculate the transformation between image and object
spaces.
______________________________________________________________

Thin Lens Illuminance
We stated above that lenses are used instead of pinholes because they form sharper images.
There is another reason, too. The illumination in the image comprises only that portion of the
light emitted from the object that is directed toward the open area of the pinhole.  By using a lens
which images all of the light emitted into the much larger area of the lens, we can predict that the
image illuminance will increase dramatically.  In this section we show how to calculate the
image illuminance and will validate that prediction.

We begin by calculating the axial image illuminance.  An object region of area AO emits rays

that are focussed into an image region with area AI=M2AO, Figure 17.
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Figure 17  Image Illuminance

The image illuminance EI is the total flux divided by the image area.  The flux is the product of:
the object’s axial luminance, LO, the object area, AO, and, the solid angle subtended by the lens,

ΩL
O

D

S
= π 2

24

Thus the image illuminance is

E
L A

A

D L

M S

D L

SI
O O L

I

O

O

O

I

= = =Ω π π2

2 2

2

24 4
(27)

Notice that this equation is similar to Equation (7) except that the pinhole diameter has been
replaced by the lens diameter, showing that the increased illuminance is a result of being able to
use larger lenses than pinholes, because focussing eliminates image blur.

Using Equations (14), (15) and (16), we can transform Equation (26) into a more useful form
which incorporates the lens F number N

E
D L

f M

N L

MI
O O=

−
=

−
π π2

2 2

2

24 1 4 1( ) ( )
(28)

Image illuminance is proportional to the object’s axial luminance.  The proportionality factor is a
function of the lens F number, which can usually be read off the side of the lens barrel, and the
magnification, which can be calculated by dividing the image size by the object size.  In
computer or machine vision applications incorporating solid state cameras, the image size is
usually known in pixels, whose physical size is part of the camera specification.
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______________________________________________________________
Example 5
In this example we extend the calculations used in Example 3 to compare the performance of a
thin lens with a pinhole lens.  We begin with image illuminance.  We cannot use Equation (28)
directly  for the pinhole camera which has no focal length f or F  number N so we will
compare the results of Equations (7) and (27) instead.

Assume the blur circle is equal to the size of a sensor pixel in a solid state camera,20µm, and that
the object distance remains SO=550mm.  For the pinhole camera, the image illuminance is

E
d L

M S

L

MM
LO

O

O
Opinhole

m= =
−

= × −π π µ2

2 2

2

2 2
7

4
20

4 0 1 550
1 04 10

( )
( . ) ( )

.

For the thin lens, the image illuminance is

E
D L

M S

L

MM
LO

O

O
Othin lens

mm= =
−

=π π2

2 2

2

2 24
19 7

4 0 1 550
0 083

( . )
( . ) ( )

.

Thus the increase in the image illuminance from the thin lens over that of the pinhole lens is

D

d
thin lens

pinhole













≈
2

800 000,

That is why lenses are used.
______________________________________________________________

Now look at the thin lens image illuminance due to an off-axis object point.  Note that no
assumptions were made about the nature of the imaging system during the derivation of
Equations (9) and (10); they are a geometrical consequence of Lambert’s law and of requiring all

of the imaging rays to pass through a hole (a pinhole or a lens aperture).  Thus the cos3θ falloff
applies to the thin lens as well,

E
N L

MI =
−

π φ φ2 3

24 1
( )cos

( )
(29a)

In the case of a diffuse object, the image illuminance is
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E
N L

MI
O=
−

π φ2 4

24 1
cos

( )
(29b)

In using either Equations  (28) or (29), one should note that in most computer or machine vision

applications the magnification is small, |M|<1, so the factor of 1/(1-M)2 can often be ignored.
Then, since EO=πLO  for a diffuse object, Equations (29) reduce to the following
approximations:

E
N L

I = π φ φ2 3

4
( )cos

(30a)

in general, or,

E
N E

I
O=

2 4

4
cos φ

(30b)

for a diffuse object.

For small angles the factors of cos3θ and  cos4θ are usually close enough to one to be ignored..

______________________________________________________________
Example 6
Assume that an object with 50% diffuse reflectivity is illuminated with 1000lux, typical room
lighting.  The object’s luminance is

EO=(0.5)(1000lux) = 500lux

If a camera with an f/2.8 lens observes this object, the sensor illuminance is

E
L NO

sensor lux= =π 2

4
15 9.

assuming M=0, which corresponds to a distant object.  This illuminance value is well within the
sensitivity range of most solid state cameras.
______________________________________________________________

Thick Lens Optics
The thin lens model is adequate for understanding the first-order optical and illumination
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properties of lenses.  However, it is not particularly good when used to describe most practical
video camera lenses which typically will contain several glass elements.  The model used to
describe the first-order properties of these lenses is called the thick lens.

The thin lens model is extended to include two principal planes, one associated with the object
space focal plane and one associated with the image space focal plane.  The principal planes are
separated by a distance ∆, which can be positive or negative, Figure 18.

∆ ff
SO SI

RO

RI

RO

RI

Object
Plane

Focal
Plane

Focal
Plane

Principal
Plane

Principal
Plane

Image
Plane

Figure 18.  Image Formation in the Thick Lens

In this model, rays travel parallel to the optical axis between principal planes so the geometry of
Figures 11 and 12 and Equations (14) and (15), which were derived from Figure 12, apply to the
thick lens.  In fact, the only difference between the thin and thick lenses is that the separation
between two focal planes is not necessarily 2f as it always is in the thin lens model.

Many practical lens designs make use of the ability to control the principal plane separation, ∆.
When the object principal plane is closer to the image focal plane (∆<0), the lens has crossed
principal planes.  The optical advantage of this arrangement is that the overall lens length (glass
to image distance) is less than for an equivalent thin lens.  These compact lenses are called
telefocal lenses.  Some lenses even allow ∆ to be varied without changing the focal length or
image plane.  They can be focussed over a large range of object distances and are the most
widely used lenses in machine vision.

In the thick lens, the locations of four planes totally characterize the optical properties: two focal
planes and two principal planes.  The focal plane locations are measured in the same way as they
were for the thin lens – parallel incident rays are used to find the planes of focus.  Conceptually,
the focal length, from which the principal plane locations are determined, is measured by
dividing the radius at which a ray enters the lens parallel to the optical axis by its slope when it
passes through the focal plane, see Figure 9.

Thick lenses are usually made from combinations of thin lenses.  The most straightforward
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method of analyzing these combinations is to calculate the image from the first lens, use that
image as the object for the second lens, etc.  For example, consider the compound lens formed of
two thin lenses with focal lengths f1 and f2 whose principal planes are a distance L apart,
Figure 19.  The diagram shows the case where L is large (L> f1 + f2). Calculate the effective
focal length, f, by following a ray that enters the lens at a radius RO parallel to the axis.

r

SO
SI

RO

f1 f2
Focal Plane

f

Object
Plane

Principal Plane
L

FP1 FP 2PP1FP1 PP 2 FP 2

Figure 19  Focal Length of a Compound Lens

The ray leaves the first lens' principal plane with slope

′ = −
r

R

fO
O

1

(31)

The ray crosses the optical axis in the focal plane of the first lens and strikes the principal plane
of the second lens at radius

r R
L f

fO= − − 1

1

(32)

The image of the first axis crossing at SO=L–f1 is another axis crossing at a distance SI

beyond the principal plane of the second lens.  SI is related to SO by Equation (15).  The slope
at the second axis crossing is proportional to the radius r ,

′ = −
r

r

SI
I

(33)

The effective focal length of the combined lenses is the object radius divided by the exit slope,

f
R

r
O

I

= −
′

(34)
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Combining equations (15), (32), (33), and (34), the focal length can be calculated

1 1 1

1 2 1 2f f f

L

f f
= + − (35)

This expression can be shown to be valid for all values of L greater than zero, even for the case
where the thin lenses are very close together.  For the case shown in Figure 19 (L> f1 + f2) this
lens diverges, f<0, which corresponds to the focal plane of the equivalent lens lying to the left of
its principal plane.  The focal plane is the plane in which the light ray crosses the axis for the
second time since the ray was initially parallel to the axes.  The principal plane of the equivalent
lens lies at the intersection of the incident ray and the final ray, a distance f to the right of the
second axis crossing.  These planes are shown in hatched lines in Figure 19.  When the lenses are
close together (L< f1 + f2), Equation (35) is still correct, but f>0, the lens converges, and the
principal plane is to the left of the focal plane.  The other focal plane and principal plane can be
found by tracing an analogous ray that travels through the system in the opposite direction.  Once
the two principal planes and focal planes are known, the compound lens can be considered to be
a single thick lens that obeys Equations (14) and (15).  Tilted object and image planes obey the
extension of the thin lens case, Figure 15.  The object plane and the object-side principal plane
intersect in a line that is parallel to and at the same radius as the line where the image plane and
image-side principal plane intersect.

The technique of using the image formed by the first lens (even if it is only a virtual image - one
that is never actually formed because an optical component gets in the way) as the object of the
second lens is the general method used for solving problems involving multiple lenses.

Once the thick lens has been replaced by the equivalent thin lens, illuminance calculations are
done as described for the thin lens above.
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