TECHNICAL PERSPECTIVE:

THE DATA CENTER IS THE COMPUTER

by David A. Patterson

nternet services are already significant forces in searching, retail purchases, music downloads, and auctions. One
vision of 21st century I'T is that most users will be accessing such services over a descendant of the cell phone rather
than running shrink-wrapped software on a descendant of the PC.

There are dramatic differences between of developing software for
millions to use as a service versus distributing software for millions to run
their PCs. First, services must be always available, so dependability is crit-
ical. Second, services must have tremendous bandwidth to support many
users, but they must also have low latency so as not annoy customers who
can easily switch to competing services. Third, the companies can inno-
vate more quickly because their software is only run inside the company.

These requirements have led to distributed data centers. They are
distributed to prevent a site disaster resulting in loss of power or net-
working from stopping the service, and to reduce latency to a world-
wide customer base.

Companies like Google are starting to hire computer architects.
When [asked Luiz Barroso of Google why, he said, “The data center is
now the computer.” Hence, computer architects are now designing
and evaluating data centers.

This is certainly a provocative notion. However, if the data center is
the computer, it leads to the even more intriguing question “What is
the equivalent of the ADD instruction for a data center?”

Jeffrey Dean and Sanjay Ghemawat offer one answer in their paper.
Like the early days of computing in the mid 20th century, the early
developers of services at Google had to worry about a myriad of gritty
details. For Google it includes partitioning data sets, communicating
between independent computers, scheduling tasks to run simultane-
ously, and handling hardware and software failures. Given the pain of
that experience, and the desire to let many develop new services inside
Google, Dean and Ghemawat chose to raise the level of abstraction.
Like their 20th century predecessors, the art was in hiding minutia while
still delivering good performance and a useful programming interface.

This brings to mind three questions:

e What are useful programming abstractions for such a large system?

* How do thousands of computers behave differently from
a small system?

e What must you do differently to run the abstraction on thousands
of computers?

They decided to offer a two-phase primitive. The first phase maps

5]

user supplied function onto thousands of computers. The second

Biography
David Patterson (pattrsn@eecs.berkeley.edu) is the Pardee Professor
of Computer Science at U. C. Berkeley, and is a Fellow and Past Pres-
ident of ACM.

phase reduces the returned values from all those thousands of
instances into a single result. Note that these two phases are highly
parallel yet simple to understand. Borrowing the name from a similar
function in Lisp, they christened the primitive “MapReduce.

Heterogeneity is one difference between running MapReduce on a
single computer versus thousands. Companies don’t buy thousands of
computers in one fell swoop, so a single data center will have genera-
tions of computers of varying speed processors and different amounts of
DRAM and disk. In addition to hardware variety, even identical equip-
ment will behave differently. Some of it will break before and perhaps
while running your program. There will also be several computers that
are limping along, making much slower progress than their siblings do.

What should MapReduce do in light of this challenging environ-
ment? Here are a few highlights. First, the scheduler accommodates
dynamic variation by assigning tasks based on how well a computer has
done recently rather than by a static priority. Second, to cope with lag-
gard computations, it was much faster to re-execute them on the fast
nodes than to wait for the slow ones to complete. Third, the Google
File System allows programs to access files efficiently from any com-
puter, so functions can be mapped everywhere.

To test performance, they ran a program across a data center that
sorts 10 billion randomly-generated records in 10 to 15 minutes,
despite node failures. That's an impressive 10 million records a second.
Such performance allowed Google to replace the old ad hoc programs
that regenerate Google’s index of the Internet with faster and simpler
code based on MapReduce.

In addition to production use of MapReduce, it empowered novice
programmers. In a half hour they can now write, run, and see output
from their programs run on thousands of computers. The original
paper had just a few months of experience by novice users, so I was
delighted to read the updated paper to learn what happened over the
last two years.

The beauty of MapReduce is that any programmer can understand
it, and its power comes from being able to harness thousands of com-
puters behind that simple interface. When paired with the distributed
Google File System to deliver data, programmers can write simple
functions that can do amazing things.

I predict MapReduce will inspire new ways of thinking about the
design and programming of large distributed systems. If MapReduce is
the first instruction of the “data center computer,” I can’t wait to see
the rest of the instruction set, as well as the data center programming
language, the data center operating system, the data center storage sys-
tems, and more.

105

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. |

