
Examples on Triggers

Instructor: Mohamed Eltabakh

 meltabakh@cs.wpi.edu

1

Example 1

2

If the employee salary increased by more than 10%, make sure the
‘rank’ field is not empty and its value has changed, otherwise reject the
update

Create or Replace Trigger EmpSal
Before Update On Employee
For Each Row
Begin
 IF (:new.salary > (:old.salary * 1.1)) Then
 IF (:new.rank is null or :new.rank = :old.rank) Then

 RAISE_APPLICATION_ERROR(-20004, 'rank field not correct');
 End IF;
 End IF;
End;
/

If the trigger exists, then drop it first

Compare the old and new salaries

Make sure to have the “/” to run the command

Example 2

3

If the employee salary increased by more than 10%, then increment the
rank field by 1.

Create or Replace Trigger EmpSal
Before Update Of salary On Employee
For Each Row
Begin
 IF (:new.salary > (:old.salary * 1.1)) Then
 :new.rank := :old.rank + 1;
 End IF;
End;
/

In the case of Update event only, we can specify which columns

We changed the new value of rank field

The assignment operator has “:”

Example 3: Using Temp Variable

4

If the newly inserted record in employee has null hireDate field, fill it in
with the current date

Create Trigger EmpDate
Before Insert On Employee
For Each Row
Declare
 temp date;
Begin
 Select sysdate into temp from dual;
 IF (:new.hireDate is null) Then
 :new.hireDate := temp;
 End IF;
End;
/

Oracle way to select the current date

Updating the new value of
hireDate before inserting it

Declare section to define variables

Since we need to change values, then it must
be “Before” event

Example 4: Maintenance of
Derived Attributes

5

Keep the bonus attribute in Employee table always 3% of the salary
attribute

Create Trigger EmpBonus
Before Insert Or Update On Employee
For Each Row
Begin
 :new.bonus := :new.salary * 0.03;
End;
/

The bonus value is always
computed automatically

Indicate two events at the
same time

Combining Multiple Events in
One Trigger
l  If you combine multiple operations

l  Sometimes you need to know what is the current operation

Create Trigger EmpBonus
Before Insert Or Update On Employee
For Each Row
Begin
 IF (inserting) Then … End IF;

 IF (updating) Then … End IF;
End;
/

Combine Insert and Update

Can do something different under
each operation

Before vs. After
l  Before Event

l  When checking certain conditions that may cause the operation to be cancelled
l  E.g., if the name is null, do not insert

l  When modifying values before the operation
l  E.g., if the date is null, put the current date

l  After Event
l  When taking other actions that will not affect the current operations

l  The insert in table X will cause an update in table Y

Before Insert Trigger:
 :new.x := …. //Changing value x that will be inserted

After Insert Trigger:

 :new.x := … //meaningless because the value is already inserted

Row-Level vs. Statement-Level
Triggers
l  Example: Update emp set salary = 1.1 * salary;

l  Changes many rows (records)

l  Row-level triggers
l  Check individual values and can update them
l  Have access to :new and :old vectors

l  Statement-level triggers
l  Do not have access to :new or :old vectors (only for row-level)
l  Execute once for the entire statement regardless how many records are

affected
l  Used for verification before or after the statement

8

Example 5: Statement-level
Trigger

9

Store the count of employees having salary > 100,000 in table R

Create Trigger EmpBonus
After Insert Or Update of salary Or Delete On Employee
For Each Statement
Begin
 delete from R;
 insert into R(cnt) Select count(*) from employee where salary > 100,000;
End;
/

 Delete the existing record in R, and

then insert the new count.

Indicate three events at the
same time

Remember: In Oracle,
it is not written

Order Of Trigger Firing

10

Before Trigger
(statement-level)

After Trigger
(statement-level)

Before Trigger
(row-level)

After Trigger
(row-level)

Event
(row-
level)

Loop over each affected record

Some Other Operations

l  Dropping Trigger

l  If creating trigger with errors

11

SQL> Drop Trigger <trigger name>;

SQL > Show errors;

It displays the compilation errors

Example on Triggers

12

Sum of loans taken by a customer does not exceed 100,000…
Assume primary keys cannot be updated

l  Which table ?
l  Which event ?
l  Which Timing ?
l  Which Granularity ?

è Borrower & Loan
è Borrower (Insert) & Loan (update)
è ??? Lets see
è row-level

13

Create Trigger CustMaxLoan1
After Insert On Borrower
For Each Row
Declare
 sumLoan int;
Begin
 Select sum(amount) into sumLoan
 From loan L, Borrower B
 where L.loan_number = B.loan_number
 And B.customer_name = :new.customer_name;

 IF sumLoan > 100,000 Then

 RAISE_APPLICATION_ERROR(-20004, ’Cannot insert record.');

 End IF;
End;
/

Sum of loans taken by a customer
does not exceed 100,000

Takes into account the new loan assigned to
the customer (because it is “After Insert”

Part 1

14

Create Trigger CustMaxLoan2
After Update of amount On Loan
For Each Row
Declare
 sumLoan int; custName varchar2(100);
Begin
 Select customer_name into custName From Borrower

 Where loan_number = :new.loan_number;

 Select sum(amount) into sumLoan
 From loan L, Borrower B
 where L.loan_number = B.loan_number
 And B.customer_name = custName;

 IF sumLoan > 100,000 Then

 RAISE_APPLICATION_ERROR(-20004, ’Cannot insert record.');

 End IF;
End;
/

Sum of loans taken by a customer
does not exceed 100,000

Get the customer to whom the updated loan
belongs

Part 2

Get the sum of loans for this customer

15

Create Trigger PK-No-Update
Before Update of loan_number On Loan
For Each Row
Begin
 RAISE_APPLICATION_ERROR(-20004, 'Cannot Update PK…');

End;
/

Example 2

Sum of loans taken by a customer does not exceed 100,000…
Assume primary keys cannot be updated

What if you are requested to
enforce this part ???

For each table, create “Before Update” trigger preventing a change on PK columns

