
6: Process Synchronization 1

Jerry Breecher

OPERATING SYSTEMS 

PROCESS SYNCHRONIZATION



6: Process Synchronization 2

What Is In This Chapter?

• This is about getting processes to coordinate with each other.

• How  do processes work with resources that must be shared 
between them?

• How  do we go about acquiring locks to protect regions of memory?

• How is synchronization really used?

OPERATING SYSTEM 
Synchronization
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Topics Covered

• Background
• The Critical-Section Problem
• Peterson’s Solution
• Synchronization Hardware
• Semaphores
• Classic Problems of Synchronization
• Synchronization Examples 
• Atomic Transactions

OPERATING SYSTEM 
Synchronization
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PROCESS 
SYNCHRONIZATION

A producer process "produces" information "consumed" by a consumer process.
Here are the variables needed to define the problem:

The Producer
Consumer Problem

#define BUFFER_SIZE 10

typedef struct {

DATA data;

} item;

item buffer[BUFFER_SIZE];

int in = 0; // Location of next input to buffer

int out = 0; // Location of next removal from buffer

int counter = 0;           // Number of buffers currently full

Consider the code segments on the next page:

• Does it work?
• Are all buffers utilized?
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PROCESS 
SYNCHRONIZATION

A producer process "produces" information 
"consumed" by a consumer process.

The Producer
Consumer Problem

item   nextProduced;

while (TRUE) {

while (counter == BUFFER_SIZE);

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

item  nextConsumed;

while (TRUE) {

while (counter == 0);

nextConsumed = buffer[out];

out = (out + 1) % 
BUFFER_SIZE;

counter--;

}

#define BUFFER_SIZE 10
typedef struct {

DATA data;
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

PRODUCER

CONSUMER

producer consumer
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Note that counter++;     ���� this line is NOT what it seems!!

is really --> register = counter
register = register + 1
counter = register

At a micro level, the following scenario could occur using this code:

PROCESS 
SYNCHRONIZATION

The Producer
Consumer Problem

TO; Producer Execute register1 = counter     register1 = 5
T1; Producer Execute register1 = register1 + 1    register1 = 6
T2; Consumer Execute register2 = counter     register2 = 5
T3; Consumer Execute register2 = register2 - 1   register2 = 4
T4; Producer Execute counter   = register1  counter   = 6
T5; Consumer Execute counter   = register2         counter   = 4
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A section of code, common to n cooperating processes, in which the 
processes may be accessing common variables.

A Critical Section Environment contains:

Entry Section Code requesting entry into the critical section.

Critical Section Code in which only one process can execute at any one time.

Exit Section The end of the critical section, releasing or allowing others in.

Remainder Section Rest of the code AFTER the critical section.

PROCESS 
SYNCHRONIZATION

Critical Sections
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The critical section must ENFORCE ALL THREE of the following rules:

Mutual Exclusion: No more than one process can execute in its critical section 
at one time.

Progress: If no one is in the critical section and someone wants in, 
then those processes not in their remainder section must 
be able to decide in a finite time who should go in.

Bounded Wait: All requesters must eventually be let into the critical 
section.

PROCESS 
SYNCHRONIZATION

Critical Sections
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do {
while  ( turn  ^=  i );
/* critical section  */
turn  =  j;
/* remainder section */

} while(TRUE);

PROCESS 
SYNCHRONIZATION

Two Processes
Software 

Here’s an example of a simple piece of code containing the components 
required in a critical section.

Entry Section

Critical Section

Exit Section

Remainder Section
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Here we try a succession of increasingly complicated solutions to the problem of 
creating valid entry sections.

NOTE: In all examples,   i is the current process,   j  the "other" process.   In 
these examples, envision the same code running on two processors at the same 
time.

TOGGLED ACCESS:
do {

while  ( turn  ^=  i );
/* critical section  */
turn  =  j;
/* remainder section */

} while(TRUE);

PROCESS 
SYNCHRONIZATION

Two Processes
Software 

Are the three Critical Section 
Requirements Met?

Algorithm 1



6: Process Synchronization 11

FLAG FOR EACH PROCESS GIVES STATE:
Each process maintains a flag indicating that it wants to get into the critical section.  It 
checks the flag of the other process and doesn’t enter the critical section if that other 
process wants to get in.

Are the three Critical 
Section Requirements Met?

PROCESS 
SYNCHRONIZATION

Two Processes
Software 

do {
flag[i] := true;
while (flag[j]) ;
critical section
flag [i] = false;
remainder section

} while (1);

Algorithm 2

Shared variables
�boolean flag[2];

initially flag [0] = flag [1] = false.
�flag [i] = true � Pi ready to enter its critical section
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FLAG TO REQUEST ENTRY:
• Each processes sets a flag to request entry.  Then each process toggles a bit to 

allow the other in first.
• This code is executed for each process i.

Are the three Critical Section 
Requirements Met?

PROCESS 
SYNCHRONIZATION

Two Processes
Software 

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn == j) ;
critical section
flag [i] = false;
remainder section

} while (1);

Algorithm 3
Shared variables
�boolean flag[2];

initially flag [0] = flag [1] = false.
�flag [i] = true � Pi ready to enter its critical section

This is Peterson’s
Solution
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The hardware required to support critical sections must have 
(minimally):

• Indivisible instructions (what are they?)

• Atomic load, store, test instruction. For instance, if a store and 
test occur simultaneously, the test gets EITHER the old or the 
new, but not some combination.

• Two atomic instructions, if executed simultaneously, behave as if 
executed sequentially.

PROCESS 
SYNCHRONIZATION

Critical Sections
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Disabling Interrupts: Works for the Uni Processor case only.  WHY?

Atomic test and set: Returns parameter and sets parameter to true atomically.

while ( test_and_set ( lock ) );
/* critical section */
lock = false;

Example of Assembler code:

GET_LOCK:     IF_CLEAR_THEN_SET_BIT_AND_SKIP <bit_address>
BRANCH    GET_LOCK /* set failed */

------- /* set succeeded */

Must be careful if these approaches are to satisfy a bounded wait condition - must 
use round robin - requires code built around the lock instructions.

PROCESS 
SYNCHRONIZATION

Hardware
Solutions 
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Boolean waiting[N];
int j; /* Takes on values from  0   to   N - 1 */
Boolean key;
do   {

waiting[i]       = TRUE;
key = TRUE;
while(  waiting[i]  &&  key   )

key  =  test_and_set( lock ); /*  Spin lock */
waiting[ i ] = FALSE;

/******   CRITICAL SECTION   ********/
j  =  (  i + 1 ) mod  N;
while (   (  j !=  i )  &&   (  ! waiting[ j ] )  )

j  =  ( j + 1 ) % N;
if  (  j  ==  i )

lock = FALSE;
else

waiting[ j ] = FALSE;
/******* REMAINDER SECTION *******/

} while (TRUE);

Using Hardware 
Test_and_set.

PROCESS 
SYNCHRONIZATION

Hardware
Solutions 
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We first need to define, for multiprocessors: 

caches, 
shared memory (for storage of lock variables), 
write through cache, 
write pipes.

The last software solution we did ( the one we thought was correct ) may not 
work on a cached multiprocessor.    Why? { Hint, is the write by one 
processor visible immediately to all other processors?}

What changes must be made to the hardware for this program to work?

PROCESS 
SYNCHRONIZATION

Current Hardware
Dilemmas
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Does the sequence below work on a cached multiprocessor?

Initially, location a contains A0 and location b contains B0.

a) Processor 1 writes data A1 to location a.
b) Processor 1 sets b to B1 indicating data at a is valid.
c) Processor 2 waits for b to take on value B1 and loops until that 
change occurs.
d) Processor 2 reads the value from a.

What value is seen by Processor 2 when it reads a?

How  must hardware be specified to guarantee the value seen?

PROCESS 
SYNCHRONIZATION

Current Hardware
Dilemmas

a:   A0 b:   B0
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We need to discuss:

Write Ordering: The first write by a processor will be visible before the 
second write is visible. This requires a write through cache.

Sequential Consistency: If Processor 1 writes to Location a "before" 
Processor 2 writes to Location b, then a is visible to ALL processors before 
b is. To do this requires NOT caching shared data.

The software solutions discussed earlier should be avoided since they require 
write ordering and/or sequential consistency.

PROCESS 
SYNCHRONIZATION

Current Hardware
Dilemmas
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Hardware test and set on a multiprocessor causes 

•an explicit flush of the write to main memory and 
•the update of all other processor's caches. 

Imagine needing to write all shared data straight through the cache.  

With test and set, only lock locations are written out explicitly.

In not too many years, hardware will no longer support software solutions 
because of the performance impact of doing so.

PROCESS 
SYNCHRONIZATION

Current Hardware
Dilemmas
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PURPOSE:
We want to be able to write more complex constructs and so need a language to do 
so.  We thus define semaphores which we assume are atomic operations:

As given here, these are not atomic as written in "macro code". We define these 
operations, however, to be atomic (Protected by a hardware  lock.)

FORMAT:
wait ( mutex ); <-- Mutual exclusion: mutex init to 1.
CRITICAL SECTION
signal( mutex ); 
REMAINDER

WAIT ( S ): 
while    ( S  <=  0 ); 
S  =  S  - 1;

SIGNAL ( S ): 
S  =  S  +  1;

PROCESS 
SYNCHRONIZATION

Semaphores
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Semaphores can be used to force synchronization ( precedence ) if the 
preceeder does a signal at the end, and the follower does wait at 
beginning. For example, here we want P1 to execute before P2.

P1: P2:
statement 1; wait ( synch );
signal ( synch ); statement 2;

PROCESS 
SYNCHRONIZATION

Semaphores
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We don't want to loop on busy, so will suspend instead:

• Block on semaphore == False,
• Wakeup on signal  ( semaphore becomes True),
• There may be numerous processes waiting for the semaphore, so keep a list of 

blocked processes,
• Wakeup one of the blocked processes upon getting a signal ( choice of who 

depends on strategy ).

To PREVENT looping, we redefine the semaphore structure as:

typedef struct {
int value;
struct process *list;       /*  linked list of PTBL waiting on  S  */

} SEMAPHORE;

PROCESS 
SYNCHRONIZATION

Semaphores
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typedef struct {
int value;
struct process *list;       /*  linked list of PTBL waiting on  S  */

} SEMAPHORE;

• It's critical that these be atomic - in uniprocessors we can disable interrupts, 
but in multiprocessors other mechanisms for atomicity are needed.

• Popular incarnations of semaphores are as "event counts" and "lock 
managers". (We'll talk about these in the next chapter.)

SEMAPHORE s;
wait(s) {

s.value  =  s.value  - 1;
if (  s.value  <  0 ) {

add this process to s.L; 
block;

}
}

SEMAPHORE s;
signal(s)  {

s.value  =  s.value  +  1;
if (  s.value  <=  0 )  {

remove a process P from s.L;
wakeup(P); 

}
}

PROCESS 
SYNCHRONIZATION

Semaphores
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DEADLOCKS:

· May occur when two or more processes try to get the same multiple resources 
at the same time.

P1: P2:
wait(S); wait(Q);
wait(Q); wait(S);
..... .....
signal(S); signal(Q);
signal(Q); signal(S);

· How can this be fixed?

PROCESS 
SYNCHRONIZATION

Semaphores
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Railways in the Andes;
A Practical Problem

High in the Andes mountains, there are two circular railway lines.  One line is in 
Peru, the other in Bolivia.  They share a common section of track where the lines 
cross a mountain pass that lies on the international border (near Lake Titicaca?).

Unfortunately, the Peruvian and Bolivian trains occasionally collide when simultaneously 
entering the common section of track (the mountain pass).  The trouble is, alas, that 
the drivers of the two trains are both blind and deaf, so they can neither see nor 
hear each other.

PROCESS 
SYNCHRONIZATION
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The two drivers agreed on the following method of preventing collisions.  They 
set up a large bowl at the entrance to the pass.  Before entering the pass, a 
driver must stop his train, walk over to the bowl, and reach into it to see it it 
contains a rock.  If the bowl is empty, the driver finds a rock and drops it in the 
bowl, indicating that his train is entering the pass; once his train has cleared the 
pass, he must walk back to the bowl and remove his rock, indicating that the 
pass in no longer being used.  Finally, he walks back to the train and continues 
down the line.
If a driver arriving at the pass finds a rock in the bowl, he leaves the rock there; 
he repeatedly takes a siesta and rechecks the bowl until he finds it empty.  Then 
he drops a rock in the bowl and drives his train into the pass. A smart graduate 
from the University of La Paz (Bolivia) claimed that subversive train schedules 
made up by Peruvian officials could block the train forever.

Explain
The Bolivian driver just laughed and said that could not be true because it never 
happened.

Explain

Unfortunately, one day the two trains crashed.

Explain
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Following the crash, the graduate was called in as a consultant to ensure that no 
more crashes would occur.  He explained that the bowl was being used in the 
wrong way.  The Bolivian driver must wait at the entry to the pass until the bowl is 
empty, drive through the pass and walk back to put a rock in the bowl.  The 
Peruvian driver must wait at the entry until the bowl contains a rock, drive through 
the pass and walk back to remove the rock from the bowl.  Sure enough, his 
method prevented crashes.
Prior to this arrangement, the Peruvian train ran twice a day and the Bolivian train 
ran once a day.  The Peruvians were very unhappy with the new arrangement.

Explain

The graduate was called in again and was told to prevent crashes while avoiding 
the problem of his previous method.  He suggested that two bowls be used, one 
for each driver.  When a driver reaches the entry, he first drops a rock in his bowl, 
then checks the other bowl to see if it is empty.  If so, he drives his train through 
the pass. Stops and walks back to remove his rock.  But if he finds a rock in the 
other bowl, he goes back to his bowl and removes his rock.  Then he takes a 
siesta, again drops a rock in his bowl and re-checks the other bowl, and so on, 
until he finds the other bowl empty.  This method worked fine until late in May, 
when the two trains were simultaneously blocked at the entry for many siestas.

Explain
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THE BOUNDED BUFFER ( PRODUCER / CONSUMER ) PROBLEM:

This is the same producer / consumer problem as before. But now we'll do it with signals and 
waits.  Remember: a  wait decreases its argument and a  signal  increases its argument.

BINARY_SEMAPHORE  mutex = 1;   // Can only be 0 or 1
COUNTING_SEMAPHORE empty = n;   full = 0; // Can take on any integer value

producer:
do {

/* produce an item in nextp */
wait (empty);   /* Do action     */
wait (mutex);   /* Buffer guard*/
/* add nextp to buffer  */
signal (mutex);
signal (full);

} while(TRUE);

consumer:
do {

wait (full);
wait (mutex);
/* remove an item from buffer to nextc */
signal (mutex);
signal (empty);
/* consume an item in nextc */

} while(TRUE);

PROCESS 
SYNCHRONIZATION

Some Interesting
Problems
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PROCESS 
SYNCHRONIZATION

THE READERS/WRITERS PROBLEM:

This is the same as the Producer / Consumer problem except - we now can have many 
concurrent readers and one exclusive writer.

Locks:   are shared (for the readers) and   exclusive (for the writer).

Two possible ( contradictory ) guidelines can be used:

• No reader is kept waiting unless a writer holds the lock (the readers have precedence).

• If a writer is waiting for access, no new reader gains access (writer has precedence).

( NOTE: starvation can occur on either of these rules if they are followed rigorously.)

Some Interesting
Problems
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THE READERS/WRITERS PROBLEM:

BINARY_SEMAPHORE    wrt = 1;
BINARY_SEMAPHORE    mutex = 1;
int readcount = 0;

Reader:
do {

wait( mutex ); /* Allow 1 reader in entry*/
readcount = readcount + 1;
if readcount == 1  then  wait(wrt );    /* 1st reader locks writer */
signal( mutex );

/*   reading is performed  */
wait( mutex );
readcount = readcount - 1;
if readcount == 0  then  signal(wrt );   /*last reader frees writer */
signal( mutex );

} while(TRUE);

Writer:
do {

wait( wrt );
/*   writing is performed    */
signal(  wrt );

} while(TRUE);

PROCESS 
SYNCHRONIZATION

Some Interesting
Problems

WAIT ( S ): 
while    ( S  <=  0 ); 
S  =  S  - 1;

SIGNAL ( S ): 
S  =  S  +  1;
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THE DINING PHILOSOPHERS PROBLEM:

5 philosophers with 5 chopsticks sit around a circular table.  They each want to eat at 
random times and must pick up the chopsticks on their right and on their left.

Clearly deadlock is rampant ( and starvation possible.)

PROCESS 
SYNCHRONIZATION

Some Interesting
Problems

Several solutions are possible:

• Allow only 4 philosophers to be hungry at a time.

• Allow pickup only if both chopsticks are 
available. ( Done in critical section )

• Odd # philosopher always picks up left chopstick 
1st, even # philosopher always picks up right 
chopstick 1st.
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High Level synchronization construct implemented in 
a programming language.

A shared variable  v  of type T, is declared as:
var v;  shared T

Variable  v  is accessed only inside a statement:
region v  when B  do S

where B is a Boolean expression.

While statement S is being executed, no other 
process can access variable v.

Regions referring to the same shared variable 
exclude each other in time.

When a process tries to execute the region 
statement, the Boolean expression B is evaluated.  

If  B  is true, statement  S  is executed.  

If it is false, the process is delayed until  B  is true and 
no other process is in the region associated with v.

PROCESS 
SYNCHRONIZATION Critical Regions

Critical Region

Entry Section

Shared Data

Exit Section
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EXAMPLE:  Bounded Buffer:

Shared variables declared as:
struct buffer {

int pool[n];
int count, in, out;

}

Producer process inserts nextp into 
the shared buffer:

region   buffer  when( count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}

Consumer process removes an item from the 
shared buffer and puts it in   nextc.

Region  buffer  when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}

PROCESS 
SYNCHRONIZATION

Critical Regions
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High-level synchronization construct that allows the safe sharing of an abstract 
data type among concurrent processes.

monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .
}
procedure body P2 (…) {

. . .
} 
procedure body Pn (…) {

. . .
} 
{

initialization code
}

}

PROCESS 
SYNCHRONIZATION

Monitors
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Monitors

• To allow a process to wait within the monitor, a condition variable 
must be declared, as

condition x, y;
• Condition variable can only be used with the operations wait and 

signal.
• The operation

x.wait();
means that the process invoking this operation is suspended 
until another process invokes

x.signal();
• The x.signal operation resumes exactly one suspended 

process.  If no process is suspended, then the signal operation 
has no effect.

PROCESS 
SYNCHRONIZATION



6: Process Synchronization 36

Schematic View of a 
Monitor

MonitorsPROCESS 
SYNCHRONIZATION
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Monitor With 
Condition Variables

MonitorsPROCESS 
SYNCHRONIZATION
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Dining Philosophers 
Examplemonitor dp {

enum {thinking, hungry, eating} state[5];
condition self[5];

}

MonitorsPROCESS 
SYNCHRONIZATION

initializationCode() {
for ( int i = 0;  i < 5;  i++ )

state[i] = thinking;
}

void putdown(int i) {
state[i] = thinking;
// test left & right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

void pickup(int i) {
state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void test(int i) {
if ( (state[(I + 4) % 5] != eating) &&

(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}



6: Process Synchronization 39

Windows XP Synchronization

• Uses interrupt masks to protect access to global resources on 
uniprocessor systems.

• Uses spinlocks on multiprocessor systems.

• Also provides dispatcher objects which may act as either mutexes or 
semaphores.

• Dispatcher objects may also provide events. An event acts much like a 
condition variable.

PROCESS 
SYNCHRONIZATION

How Is This 
Really Used?
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Wrap up

In this chapter we have:

Looked at many incarnations of the producer consumer problem.

Understood how to use critical sections and their use in semaphores.

Synchronization IS used in real life.  Generally programmers don’t use the really 
primitive hardware locks, but use higher level mechanisms as we’ve demonstrated.

PROCESS SYNCHRONIZATION


