
6: Process Synchronization 1

Jerry Breecher

OPERATING SYSTEMS

PROCESS SYNCHRONIZATION

6: Process Synchronization 2

What Is In This Chapter?

• This is about getting processes to coordinate with each other.

• How do processes work with resources that must be shared
between them?

• How do we go about acquiring locks to protect regions of memory?

• How is synchronization really used?

OPERATING SYSTEM
Synchronization

6: Process Synchronization 3

Topics Covered

• Background
• The Critical-Section Problem
• Peterson’s Solution
• Synchronization Hardware
• Semaphores
• Classic Problems of Synchronization
• Synchronization Examples
• Atomic Transactions

OPERATING SYSTEM
Synchronization

6: Process Synchronization 4

PROCESS
SYNCHRONIZATION

A producer process "produces" information "consumed" by a consumer process.
Here are the variables needed to define the problem:

The Producer
Consumer Problem

#define BUFFER_SIZE 10

typedef struct {

DATA data;

} item;

item buffer[BUFFER_SIZE];

int in = 0; // Location of next input to buffer

int out = 0; // Location of next removal from buffer

int counter = 0; // Number of buffers currently full

Consider the code segments on the next page:

• Does it work?
• Are all buffers utilized?

6: Process Synchronization 5

PROCESS
SYNCHRONIZATION

A producer process "produces" information
"consumed" by a consumer process.

The Producer
Consumer Problem

item nextProduced;

while (TRUE) {

while (counter == BUFFER_SIZE);

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

item nextConsumed;

while (TRUE) {

while (counter == 0);

nextConsumed = buffer[out];

out = (out + 1) %
BUFFER_SIZE;

counter--;

}

#define BUFFER_SIZE 10
typedef struct {

DATA data;
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

PRODUCER

CONSUMER

producer consumer

6: Process Synchronization 6

Note that counter++; ���� this line is NOT what it seems!!

is really --> register = counter
register = register + 1
counter = register

At a micro level, the following scenario could occur using this code:

PROCESS
SYNCHRONIZATION

The Producer
Consumer Problem

TO; Producer Execute register1 = counter register1 = 5
T1; Producer Execute register1 = register1 + 1 register1 = 6
T2; Consumer Execute register2 = counter register2 = 5
T3; Consumer Execute register2 = register2 - 1 register2 = 4
T4; Producer Execute counter = register1 counter = 6
T5; Consumer Execute counter = register2 counter = 4

6: Process Synchronization 7

A section of code, common to n cooperating processes, in which the
processes may be accessing common variables.

A Critical Section Environment contains:

Entry Section Code requesting entry into the critical section.

Critical Section Code in which only one process can execute at any one time.

Exit Section The end of the critical section, releasing or allowing others in.

Remainder Section Rest of the code AFTER the critical section.

PROCESS
SYNCHRONIZATION

Critical Sections

6: Process Synchronization 8

The critical section must ENFORCE ALL THREE of the following rules:

Mutual Exclusion: No more than one process can execute in its critical section
at one time.

Progress: If no one is in the critical section and someone wants in,
then those processes not in their remainder section must
be able to decide in a finite time who should go in.

Bounded Wait: All requesters must eventually be let into the critical
section.

PROCESS
SYNCHRONIZATION

Critical Sections

6: Process Synchronization 9

do {
while (turn ^= i);
/* critical section */
turn = j;
/* remainder section */

} while(TRUE);

PROCESS
SYNCHRONIZATION

Two Processes
Software

Here’s an example of a simple piece of code containing the components
required in a critical section.

Entry Section

Critical Section

Exit Section

Remainder Section

6: Process Synchronization 10

Here we try a succession of increasingly complicated solutions to the problem of
creating valid entry sections.

NOTE: In all examples, i is the current process, j the "other" process. In
these examples, envision the same code running on two processors at the same
time.

TOGGLED ACCESS:
do {

while (turn ^= i);
/* critical section */
turn = j;
/* remainder section */

} while(TRUE);

PROCESS
SYNCHRONIZATION

Two Processes
Software

Are the three Critical Section
Requirements Met?

Algorithm 1

6: Process Synchronization 11

FLAG FOR EACH PROCESS GIVES STATE:
Each process maintains a flag indicating that it wants to get into the critical section. It
checks the flag of the other process and doesn’t enter the critical section if that other
process wants to get in.

Are the three Critical
Section Requirements Met?

PROCESS
SYNCHRONIZATION

Two Processes
Software

do {
flag[i] := true;
while (flag[j]) ;
critical section
flag [i] = false;
remainder section

} while (1);

Algorithm 2

Shared variables
�boolean flag[2];

initially flag [0] = flag [1] = false.
�flag [i] = true � Pi ready to enter its critical section

6: Process Synchronization 12

FLAG TO REQUEST ENTRY:
• Each processes sets a flag to request entry. Then each process toggles a bit to

allow the other in first.
• This code is executed for each process i.

Are the three Critical Section
Requirements Met?

PROCESS
SYNCHRONIZATION

Two Processes
Software

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn == j) ;
critical section
flag [i] = false;
remainder section

} while (1);

Algorithm 3
Shared variables
�boolean flag[2];

initially flag [0] = flag [1] = false.
�flag [i] = true � Pi ready to enter its critical section

This is Peterson’s
Solution

6: Process Synchronization 13

The hardware required to support critical sections must have
(minimally):

• Indivisible instructions (what are they?)

• Atomic load, store, test instruction. For instance, if a store and
test occur simultaneously, the test gets EITHER the old or the
new, but not some combination.

• Two atomic instructions, if executed simultaneously, behave as if
executed sequentially.

PROCESS
SYNCHRONIZATION

Critical Sections

6: Process Synchronization 14

Disabling Interrupts: Works for the Uni Processor case only. WHY?

Atomic test and set: Returns parameter and sets parameter to true atomically.

while (test_and_set (lock));
/* critical section */
lock = false;

Example of Assembler code:

GET_LOCK: IF_CLEAR_THEN_SET_BIT_AND_SKIP <bit_address>
BRANCH GET_LOCK /* set failed */

------- /* set succeeded */

Must be careful if these approaches are to satisfy a bounded wait condition - must
use round robin - requires code built around the lock instructions.

PROCESS
SYNCHRONIZATION

Hardware
Solutions

6: Process Synchronization 15

Boolean waiting[N];
int j; /* Takes on values from 0 to N - 1 */
Boolean key;
do {

waiting[i] = TRUE;
key = TRUE;
while(waiting[i] && key)

key = test_and_set(lock); /* Spin lock */
waiting[i] = FALSE;

/****** CRITICAL SECTION ********/
j = (i + 1) mod N;
while ((j != i) && (! waiting[j]))

j = (j + 1) % N;
if (j == i)

lock = FALSE;
else

waiting[j] = FALSE;
/******* REMAINDER SECTION *******/

} while (TRUE);

Using Hardware
Test_and_set.

PROCESS
SYNCHRONIZATION

Hardware
Solutions

6: Process Synchronization 16

We first need to define, for multiprocessors:

caches,
shared memory (for storage of lock variables),
write through cache,
write pipes.

The last software solution we did (the one we thought was correct) may not
work on a cached multiprocessor. Why? { Hint, is the write by one
processor visible immediately to all other processors?}

What changes must be made to the hardware for this program to work?

PROCESS
SYNCHRONIZATION

Current Hardware
Dilemmas

6: Process Synchronization 17

Does the sequence below work on a cached multiprocessor?

Initially, location a contains A0 and location b contains B0.

a) Processor 1 writes data A1 to location a.
b) Processor 1 sets b to B1 indicating data at a is valid.
c) Processor 2 waits for b to take on value B1 and loops until that
change occurs.
d) Processor 2 reads the value from a.

What value is seen by Processor 2 when it reads a?

How must hardware be specified to guarantee the value seen?

PROCESS
SYNCHRONIZATION

Current Hardware
Dilemmas

a: A0 b: B0

6: Process Synchronization 18

We need to discuss:

Write Ordering: The first write by a processor will be visible before the
second write is visible. This requires a write through cache.

Sequential Consistency: If Processor 1 writes to Location a "before"
Processor 2 writes to Location b, then a is visible to ALL processors before
b is. To do this requires NOT caching shared data.

The software solutions discussed earlier should be avoided since they require
write ordering and/or sequential consistency.

PROCESS
SYNCHRONIZATION

Current Hardware
Dilemmas

6: Process Synchronization 19

Hardware test and set on a multiprocessor causes

•an explicit flush of the write to main memory and
•the update of all other processor's caches.

Imagine needing to write all shared data straight through the cache.

With test and set, only lock locations are written out explicitly.

In not too many years, hardware will no longer support software solutions
because of the performance impact of doing so.

PROCESS
SYNCHRONIZATION

Current Hardware
Dilemmas

6: Process Synchronization 20

PURPOSE:
We want to be able to write more complex constructs and so need a language to do
so. We thus define semaphores which we assume are atomic operations:

As given here, these are not atomic as written in "macro code". We define these
operations, however, to be atomic (Protected by a hardware lock.)

FORMAT:
wait (mutex); <-- Mutual exclusion: mutex init to 1.
CRITICAL SECTION
signal(mutex);
REMAINDER

WAIT (S):
while (S <= 0);
S = S - 1;

SIGNAL (S):
S = S + 1;

PROCESS
SYNCHRONIZATION

Semaphores

6: Process Synchronization 21

Semaphores can be used to force synchronization (precedence) if the
preceeder does a signal at the end, and the follower does wait at
beginning. For example, here we want P1 to execute before P2.

P1: P2:
statement 1; wait (synch);
signal (synch); statement 2;

PROCESS
SYNCHRONIZATION

Semaphores

6: Process Synchronization 22

We don't want to loop on busy, so will suspend instead:

• Block on semaphore == False,
• Wakeup on signal (semaphore becomes True),
• There may be numerous processes waiting for the semaphore, so keep a list of

blocked processes,
• Wakeup one of the blocked processes upon getting a signal (choice of who

depends on strategy).

To PREVENT looping, we redefine the semaphore structure as:

typedef struct {
int value;
struct process *list; /* linked list of PTBL waiting on S */

} SEMAPHORE;

PROCESS
SYNCHRONIZATION

Semaphores

6: Process Synchronization 23

typedef struct {
int value;
struct process *list; /* linked list of PTBL waiting on S */

} SEMAPHORE;

• It's critical that these be atomic - in uniprocessors we can disable interrupts,
but in multiprocessors other mechanisms for atomicity are needed.

• Popular incarnations of semaphores are as "event counts" and "lock
managers". (We'll talk about these in the next chapter.)

SEMAPHORE s;
wait(s) {

s.value = s.value - 1;
if (s.value < 0) {

add this process to s.L;
block;

}
}

SEMAPHORE s;
signal(s) {

s.value = s.value + 1;
if (s.value <= 0) {

remove a process P from s.L;
wakeup(P);

}
}

PROCESS
SYNCHRONIZATION

Semaphores

6: Process Synchronization 24

DEADLOCKS:

· May occur when two or more processes try to get the same multiple resources
at the same time.

P1: P2:
wait(S); wait(Q);
wait(Q); wait(S);
.....
signal(S); signal(Q);
signal(Q); signal(S);

· How can this be fixed?

PROCESS
SYNCHRONIZATION

Semaphores

6: Process Synchronization 25

Railways in the Andes;
A Practical Problem

High in the Andes mountains, there are two circular railway lines. One line is in
Peru, the other in Bolivia. They share a common section of track where the lines
cross a mountain pass that lies on the international border (near Lake Titicaca?).

Unfortunately, the Peruvian and Bolivian trains occasionally collide when simultaneously
entering the common section of track (the mountain pass). The trouble is, alas, that
the drivers of the two trains are both blind and deaf, so they can neither see nor
hear each other.

PROCESS
SYNCHRONIZATION

6: Process Synchronization 26

The two drivers agreed on the following method of preventing collisions. They
set up a large bowl at the entrance to the pass. Before entering the pass, a
driver must stop his train, walk over to the bowl, and reach into it to see it it
contains a rock. If the bowl is empty, the driver finds a rock and drops it in the
bowl, indicating that his train is entering the pass; once his train has cleared the
pass, he must walk back to the bowl and remove his rock, indicating that the
pass in no longer being used. Finally, he walks back to the train and continues
down the line.
If a driver arriving at the pass finds a rock in the bowl, he leaves the rock there;
he repeatedly takes a siesta and rechecks the bowl until he finds it empty. Then
he drops a rock in the bowl and drives his train into the pass. A smart graduate
from the University of La Paz (Bolivia) claimed that subversive train schedules
made up by Peruvian officials could block the train forever.

Explain
The Bolivian driver just laughed and said that could not be true because it never
happened.

Explain

Unfortunately, one day the two trains crashed.

Explain

6: Process Synchronization 27

Following the crash, the graduate was called in as a consultant to ensure that no
more crashes would occur. He explained that the bowl was being used in the
wrong way. The Bolivian driver must wait at the entry to the pass until the bowl is
empty, drive through the pass and walk back to put a rock in the bowl. The
Peruvian driver must wait at the entry until the bowl contains a rock, drive through
the pass and walk back to remove the rock from the bowl. Sure enough, his
method prevented crashes.
Prior to this arrangement, the Peruvian train ran twice a day and the Bolivian train
ran once a day. The Peruvians were very unhappy with the new arrangement.

Explain

The graduate was called in again and was told to prevent crashes while avoiding
the problem of his previous method. He suggested that two bowls be used, one
for each driver. When a driver reaches the entry, he first drops a rock in his bowl,
then checks the other bowl to see if it is empty. If so, he drives his train through
the pass. Stops and walks back to remove his rock. But if he finds a rock in the
other bowl, he goes back to his bowl and removes his rock. Then he takes a
siesta, again drops a rock in his bowl and re-checks the other bowl, and so on,
until he finds the other bowl empty. This method worked fine until late in May,
when the two trains were simultaneously blocked at the entry for many siestas.

Explain

6: Process Synchronization 28

THE BOUNDED BUFFER (PRODUCER / CONSUMER) PROBLEM:

This is the same producer / consumer problem as before. But now we'll do it with signals and
waits. Remember: a wait decreases its argument and a signal increases its argument.

BINARY_SEMAPHORE mutex = 1; // Can only be 0 or 1
COUNTING_SEMAPHORE empty = n; full = 0; // Can take on any integer value

producer:
do {

/* produce an item in nextp */
wait (empty); /* Do action */
wait (mutex); /* Buffer guard*/
/* add nextp to buffer */
signal (mutex);
signal (full);

} while(TRUE);

consumer:
do {

wait (full);
wait (mutex);
/* remove an item from buffer to nextc */
signal (mutex);
signal (empty);
/* consume an item in nextc */

} while(TRUE);

PROCESS
SYNCHRONIZATION

Some Interesting
Problems

6: Process Synchronization 29

PROCESS
SYNCHRONIZATION

THE READERS/WRITERS PROBLEM:

This is the same as the Producer / Consumer problem except - we now can have many
concurrent readers and one exclusive writer.

Locks: are shared (for the readers) and exclusive (for the writer).

Two possible (contradictory) guidelines can be used:

• No reader is kept waiting unless a writer holds the lock (the readers have precedence).

• If a writer is waiting for access, no new reader gains access (writer has precedence).

(NOTE: starvation can occur on either of these rules if they are followed rigorously.)

Some Interesting
Problems

6: Process Synchronization 30

THE READERS/WRITERS PROBLEM:

BINARY_SEMAPHORE wrt = 1;
BINARY_SEMAPHORE mutex = 1;
int readcount = 0;

Reader:
do {

wait(mutex); /* Allow 1 reader in entry*/
readcount = readcount + 1;
if readcount == 1 then wait(wrt); /* 1st reader locks writer */
signal(mutex);

/* reading is performed */
wait(mutex);
readcount = readcount - 1;
if readcount == 0 then signal(wrt); /*last reader frees writer */
signal(mutex);

} while(TRUE);

Writer:
do {

wait(wrt);
/* writing is performed */
signal(wrt);

} while(TRUE);

PROCESS
SYNCHRONIZATION

Some Interesting
Problems

WAIT (S):
while (S <= 0);
S = S - 1;

SIGNAL (S):
S = S + 1;

6: Process Synchronization 31

THE DINING PHILOSOPHERS PROBLEM:

5 philosophers with 5 chopsticks sit around a circular table. They each want to eat at
random times and must pick up the chopsticks on their right and on their left.

Clearly deadlock is rampant (and starvation possible.)

PROCESS
SYNCHRONIZATION

Some Interesting
Problems

Several solutions are possible:

• Allow only 4 philosophers to be hungry at a time.

• Allow pickup only if both chopsticks are
available. (Done in critical section)

• Odd # philosopher always picks up left chopstick
1st, even # philosopher always picks up right
chopstick 1st.

6: Process Synchronization 32

High Level synchronization construct implemented in
a programming language.

A shared variable v of type T, is declared as:
var v; shared T

Variable v is accessed only inside a statement:
region v when B do S

where B is a Boolean expression.

While statement S is being executed, no other
process can access variable v.

Regions referring to the same shared variable
exclude each other in time.

When a process tries to execute the region
statement, the Boolean expression B is evaluated.

If B is true, statement S is executed.

If it is false, the process is delayed until B is true and
no other process is in the region associated with v.

PROCESS
SYNCHRONIZATION Critical Regions

Critical Region

Entry Section

Shared Data

Exit Section

6: Process Synchronization 33

EXAMPLE: Bounded Buffer:

Shared variables declared as:
struct buffer {

int pool[n];
int count, in, out;

}

Producer process inserts nextp into
the shared buffer:

region buffer when(count < n) {
pool[in] = nextp;
in:= (in+1) % n;
count++;

}

Consumer process removes an item from the
shared buffer and puts it in nextc.

Region buffer when (count > 0) {
nextc = pool[out];
out = (out+1) % n;
count--;

}

PROCESS
SYNCHRONIZATION

Critical Regions

6: Process Synchronization 34

High-level synchronization construct that allows the safe sharing of an abstract
data type among concurrent processes.

monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .
}
procedure body P2 (…) {

. . .
}
procedure body Pn (…) {

. . .
}
{

initialization code
}

}

PROCESS
SYNCHRONIZATION

Monitors

6: Process Synchronization 35

Monitors

• To allow a process to wait within the monitor, a condition variable
must be declared, as

condition x, y;
• Condition variable can only be used with the operations wait and

signal.
• The operation

x.wait();
means that the process invoking this operation is suspended
until another process invokes

x.signal();
• The x.signal operation resumes exactly one suspended

process. If no process is suspended, then the signal operation
has no effect.

PROCESS
SYNCHRONIZATION

6: Process Synchronization 36

Schematic View of a
Monitor

MonitorsPROCESS
SYNCHRONIZATION

6: Process Synchronization 37

Monitor With
Condition Variables

MonitorsPROCESS
SYNCHRONIZATION

6: Process Synchronization 38

Dining Philosophers
Examplemonitor dp {

enum {thinking, hungry, eating} state[5];
condition self[5];

}

MonitorsPROCESS
SYNCHRONIZATION

initializationCode() {
for (int i = 0; i < 5; i++)

state[i] = thinking;
}

void putdown(int i) {
state[i] = thinking;
// test left & right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

void pickup(int i) {
state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void test(int i) {
if ((state[(I + 4) % 5] != eating) &&

(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

6: Process Synchronization 39

Windows XP Synchronization

• Uses interrupt masks to protect access to global resources on
uniprocessor systems.

• Uses spinlocks on multiprocessor systems.

• Also provides dispatcher objects which may act as either mutexes or
semaphores.

• Dispatcher objects may also provide events. An event acts much like a
condition variable.

PROCESS
SYNCHRONIZATION

How Is This
Really Used?

6: Process Synchronization 40

Wrap up

In this chapter we have:

Looked at many incarnations of the producer consumer problem.

Understood how to use critical sections and their use in semaphores.

Synchronization IS used in real life. Generally programmers don’t use the really
primitive hardware locks, but use higher level mechanisms as we’ve demonstrated.

PROCESS SYNCHRONIZATION

