
CS2223:	
 Algorithms	

D-­‐Term,	
 2013	

	

Assignment	
 2	
 	

1	

Teams:	
 To	
 be	
 done	
 individually	

	

Release	
 date:	
 03/23/2013	

	

Due	
 date:	
 03/30/2013	
 	
 (11:59	
 PM)	

	

Submission:	
 Electronic	
 submission	
 only	

**Note:	
 No	
 late	
 submission	
 of	
 Assignment	
 2	
 will	
 be	
 accepted	
 because	
 the	
 solu=on	

will	
 be	
 posted	
 immediately	
 a?er	
 the	
 due	
 date	
 to	
 be	
 available	
 before	
 midterm	
 I.	
 	

	

General Instructions

•  Executable vs. Pseudocode: Each question will explicitly state whether the deliverable is
pseudocode or an executable program that the TA will run to give you a grade.

•  Programming Language: If a question asks you to write an executable program, then
choose a language of your choice, but make it clear in your report:
–  How to compile your program
–  How to execute it and with what arguments

•  Submissions: The submission of Assignment 2 must be done electronically through
blackboard system. All programs plus your report (.doc, .docx, or .pdf) should be zipped
into a single file and that is the file to submit.

2	

Question 1 (Comparison of Sorting Techniques) [20 Points]

We learned a couple of sorting algorithms over the last two weeks. Your task in this problem is to
implement two of the most efficient algorithms, namely the merge sort and quick sort. Also create a
simple graphical interface that render the array while being sorted (That is, after several iterations of
the algorithm, re-draw the content).

Hint: The interface should be very simple, e.g., map each value to a vertical line with scale
corresponding to the value.

Deliverables of Question 1
 (1) A single executable program written any a language of your choice. The program should contain

the two sorting algorithms mentioned above. The program takes one argument with values:
 -- 1 (calls the merge sort),

 -- 2 (calls the quick sort),

 (2) At the beginning, the program should create an array of 200 values randomly selected from the
range of [1..500]. That will be the array to be sorted.

 (3) The output of the algorithm is the graphical view of the array content rendered after several
iterations (You can fix this in your code). Just make sure the interface will capture the progress of the
algorithm.

3	

Question 2 (Recurrence Relations) [20 Points]

For each of the following recurrences, use either the Tree-Based method (Section 4.4 in the Textbook),
or the Master Theorem (Section 4.5) to solve it and produce the Big-O complexity of the recurrence.

1)  T(n) = T(n/2) + O(1)

** Also mention an algorithm we took in class or HW1 that closely follow this recurrence.

2)  T(n) = 2T(n/2) + O(n)
 ** Also mention an algorithm we took in class or HW1 that closely follow this recurrence.

3)  T(n) = 4T(n/2) + O(n)

 ** Hint: 1 + 2 + 4 + 8 + ….+ n = 2^(n+1) – 1

4) T(n) = 7T(n/2) + O(n^2)

4	

5	

Question 3 (Analyze Algorithm) [10 Points]
 	
 	

Assume	
 we	
 have	
 the	
 following	
 sorKng	
 algorithm:	
 	

	

To	
 sort	
 an	
 array	
 of	
 size	
 N	
 (A[1…N]),	
 the	
 algorithm	
 will	
 do	
 the	
 following:	

	
 a-­‐	
 Recursively,	
 Sort	
 the	
 first	
 N-­‐1	
 elements	
 A[1…N-­‐1]	

	
 b-­‐	
 Use	
 binary	
 search	
 to	
 find	
 the	
 correct	
 place	
 of	
 A[N]	
 to	
 add	
 it	
 to	
 the	
 sorted	
 list.	
 AVer	
 finding	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 the	
 correct	
 place,	
 it	
 will	
 need	
 to	
 shiV	
 the	
 values	
 to	
 make	
 place	
 for	
 A[N].	

	

1)  Write	
 the	
 detailed	
 recurrence	
 equaKon	
 for	
 this	
 algorithm	
 (do	
 not	
 omit	
 any	
 terms).	

2)  Simplify	
 the	
 recurrence	
 equaKon	
 by	
 throwing	
 away	
 terms	
 that	
 are	
 dominated	
 by	
 others.	
 And	

then	
 use	
 Both	
 the	
 Master	
 Theorem	
 and	
 the	
 Tree-­‐Based	
 method	
 to	
 compute	
 the	
 complexity	
 of	

this	
 algorithm.	
 	

	
 	

