
1

1

CS533
Modeling and Performance
Evaluation of Network and

Computer Systems

Monitors

(Chapter 7)
2

Monitors

• A monitor is a tool
used to observe
system
– Observe performance
– Collect performance

statistics
– May analyze the data
– May display results
– May even suggest

remedies

• Systems programmer may
profile software

• System manager may
measure resource
utilization to find
bottleneck

• May use to tune system
• May use to characterize

workload
• May use to develop models

or inputs for models

That which is monitored improves. – Source unknown

3

Example: gprof

• Profile dog-mailman simulation
– gcc with “-pg” flag

• Adds timing “hooks” into your code
– gprof a.out gmon.out

• gmon.out has profile information from run
• Also provides call graph information

% cumulative self self total
time seconds seconds calls us/call us/call name
83.67 0.41 0.41 10 41000.00 49000.00 runSim
12.24 0.47 0.06 708202 0.08 0.08 slip
4.08 0.49 0.02 708202 0.03 0.11 speed
0.00 0.49 0.00 708199 0.00 0.00 position
0.00 0.49 0.00 50 0.00 0.00 GetFlag
0.00 0.49 0.00 10 0.00 0.00 setup
0.00 0.49 0.00 1 0.00 0.00 gettime

4

Example: tcpdump (1 of 2)

• tcpdump – open source network sniffer
tcpdump –w dump.out
tcpdump –r dump.out

• Also, ethereal and tethereal

04:58:53.680001 cs.WPI.EDU.59457 > saagar.wpi.edu.ssh: P 193:241(48) ack 256 win
27512 <nop,nop,timestamp 51273481 430361043> (DF)
04:58:53.680610 saagar.wpi.edu.ssh > cs.WPI.EDU.59457: P 256:304(48) ack 241 win
10336 <nop,nop,timestamp 430361101 51273481> (DF) [tos 0x10]
04:58:53.680977 cs.WPI.EDU.59457 > saagar.wpi.edu.ssh: . ack 304 win 27512 <nop,
nop,timestamp 51273481 430361101> (DF)
04:58:53.691672 saagar.wpi.edu.wizard > ns.WPI.EDU.domain: 6143+ A? sprobe.cs.w
ashington.edu. (42) (DF) [tos 0x10]
04:58:53.692187 saagar.wpi.edu.ssh > cs.WPI.EDU.59457: P 304:512(208) ack 241 wi
n 10336 <nop,nop,timestamp 430361103 51273481> (DF) [tos 0x10]
04:58:53.692436 ns.WPI.EDU.domain > saagar.wpi.edu.wizard: 6143 2/6/3 CNAME[|do
main] (DF)
04:58:53.692905 cs.WPI.EDU.59457 > saagar.wpi.edu.ssh: . ack 512 win 27512 <nop,
nop,timestamp 51273482 430361103> (DF)
04:58:53.693022 saagar.wpi.edu.11032 > wicse.cs.washington.edu.http: S 637950672
:637950672(0) win 5840 <mss 1460,sackOK,timestamp 430361103 0,nop,wscale 0> (DF)
[tos 0x8]
04:58:53.693193 saagar.wpi.edu.ssh > cs.WPI.EDU.59457: P 512:624(112) ack 241 wi
n 10336 <nop,nop,timestamp 430361103 51273482> (DF) [tos 0x10]
04:58:53.693615 cs.WPI.EDU.59457 > saagar.wpi.edu.ssh: . ack 624 win 27512 <nop,
nop,timestamp 51273482 430361103> (DF)

5

Example: tcpdump (2 of 2)

3.8 Kbps

4.0 Kbps

6.8 Kbps

(Picture here that cannot convert to PDF)

6

Outline
• Introduction
• Terminology
• Software Monitors
• Hardware Monitors
• Monitoring Distributed Systems

2

7

Terminology
• Event – a change in the system state.

– Ex: context switch, seek on disk, arrival of packet
• Trace – log of events, with time, type, etc
• Overhead – most perturb system, use CPU or

storage. Sometimes called artifact. Goal is to
minimize artifact

• Domain – set of activities observable. Ex: network
logs packets, bytes, types of packet

• Input rate – maximum frequency of events can
record. Burst and sustained. Ex: tcpdump will
report “missed”

• Resolution – coarseness of information. Ex: gprof
records 0.01 seconds.

• Input width – number of bits recorded for each
event. Input rate x width = storage required 8

Monitor Classification
• Implementation level

– Software, Hardware, Firmware, Hybrid
• Trigger mechanism

– Event driven – low overhead for rare event,
but higher if event is frequent

– Sampling (timer driven) – ideal for frequent
event

• Display
– On-line – provide data continuously. Ex:
tcpdump

– Batch – collect data for later analysis. Ex:
gprof.

9

Outline
• Introduction
• Terminology
• Software Monitors
• Hardware Monitors
• Monitoring Distributed Systems

10

Software Monitors
• Record several instructions per event

– In general, only suitable for low frequency
event or overhead too high

– Overhead may be ok if timing does not need
to be preserved. Ex: profiling where want
relative time spent

• Lower input rates, resolutions and higher
overhead than hardware

• But, higher input widths, higher recording
capacities

• Easier to develop and modify

11

Issues in Software Monitor Design
- Activation Mechanism

• How to trigger to collect data
• Trap- software interrupt at appropriate

points. Collect data. Like a subroutine.
– Ex: to measure I/O trap before I/O service

routine and record time, trap after, take diff
• Trace- collect data every instruction.

Enormous overhead. Time insensitive.
• Timer interrupt – fixed intervals. If

sampling counter, beware of overflows

12

Issues in Software Monitor Design
– Buffer Size

• Store recorded data in memory until write
to disk

• Should be large
– to minimize need to write frequently

• Should be small
– so don’t have a lot of overhead when write

to disk
– so doesn’t impact performance of system

• So, optimal function of input rate, input
width, emptying rate

3

13

Issues in Software Monitor Design
– Buffers

• Usually organized in a ring
• Allows recording (buffer-emptying) process to

proceed at a different rate than monitoring
(buffer-filling) process
– Monitoring may be bursty

• Since cannot read while processes is writing, a
minimum of two buffers required for concurrent
access

• May be circular for writing so monitor overwrites
last if recording process too slow

• May compress to reduce space, but adds overhead

14

Issues in Software Monitor Design
– Misc

• On/Off
– Most hardware monitors have on/off switch
– Software can have “if … then” but still some

overhead. Or can “compile out”
•Ex: remove “-pg” flag
•Ex: with #define and #ifdef

• Priority
– Asynchronous, then keep low. If timing

matters, need it sufficiently high so doesn’t
caus skew

15

Outline
• Introduction
• Terminology
• Software Monitors
• Hardware Monitors
• Monitoring Distributed Systems

16

Hardware Monitors
• Generally, lower overhead, higher input

rate, reduced chance of introducing bugs
• Can increment counters, compare values,

record histograms of observed values …
• Usually, gone through several generations

and testing so is robust

17

Software vs. Hardware Monitor
• What level of detail to measure?

– Software more limited to system layer code (OS,
device driver) or application or above

– Hardware may not be able to get above information
• What is input rate? Hardware tends to be fasterr
• Expertise?

– Good knowledge of hardware needed for hardware
monitor

– Good knowledge of software system (programmer)
needed for software monitor

• Most hardware monitors can work with a variety
of systems, but software may be system specific

• Most hardware monitors work when there are
bugs, but software monitors brittle

• Hardware monitors more expensive 18

Outline
• Introduction
• Terminology
• Software Monitors
• Hardware Monitors
• Monitoring Distributed Systems

4

19

Monitoring Distributed Systems
• More difficult than

single computer
system

• Monitor itself must be
distributed

• Easiest with layered
view of monitors

• May be zero+
components of each
layer

• Many-to-many
relationship between
layers

• Management
• Console
• Interpretation
• Presentation
• Analysis
• Collection
• Observation

20

Components of a Distributed
Systems Monitor

Subsystem1 Subsystem2 Subsystem3
Observer1 Observer2 Observer3
Collector1 Collector 2
Analyzer1 Analyzer2
Presenter1 Presenter2
Interpreter1 Interpreter2
Console1 Console2
Manager1 Manger2

Human
Beings

21

Observation (1 of 2)
• Concerned with data gathering
• Implicit spying – promiscuously observing

the activity on the bus or network link
– Little impact on existing system
– Accompany with filters that can ignore

some events
– Ex: tcpdump between two IP address

• Explicit instrumentation – incorporating
trace points, hooks, … Adds overhead, but
can augment implicit data
– Ex: may have application hooks logging when

data sent
22

Observation (2 of 2)
• Probing – making “feeler” requests to see

performance
– Ex: packet pair techniques to gauge capacity

• There is overlap between the three
techniques, but often show part of system
that others cannot

23

Collection
• Data gathering component, perhaps from

several observers
– Ex: I/O and network observer on one host

could go to one collector for the system
• May have different collectors share same

observers
– Collectors can poll observers for data
– Or observers can advertise when they have

data
• Clock synchronization can be an issue

– Usually aggregate over a large interval to
account for skew

24

Analysis
• More sophisticated than collector
• Division of labor unclear, but usually, if

fast, infrequent in observer, but if takes
more processing time, put in analyzer

• Or, if it requires aggregate data, put in
analyzer
– Ex: if successful transaction rate depends

upon disk error rate and network error rate
then analyzer needs data from multiple
observers

• General philosophy, simplify observers and
push complexity to analyzers

5

25

Presentation (1 of 2)
• User interface, closely tied with monitor

function
• Three key functions
• 1) Performance monitoring – helps quantify

if service provided is correct
– Throughput, response time, utilization of

different components
– Summary statistics
– Time stamped traces

26

Presentation (2 of 2)
• 2) Error monitoring – incorrect

performance
– Error statistics, counts or traces
– Maybe sort to help determine what part of

system is unreliable
• 3) Configuration monitoring – non-

performance of the system components
– Tell which are up
– Show initial configurations
– May show only incremental configurations
– Scope to allow zoom or whole system

27

Interpretation and Console
• Interpreter – uses set of rules to make

judgments about state of system
– Often need expert system to warn about

faults before they occur
– May suggest configuration changes

• Console functions – allow system manager
to change system, bring up and down, allow
remote diagnostics
– Ideally, one console can get feedback and

apply configuration, but some parts may be
vendor specific

