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Abstract

Rankings are used in sports to reflect the relative strength of teams in comparison with
each other. In this work we take a new approach to sports rankings that focuses on the actual
games played where the primary goal of the ranking is to minimize “misranked” game results
in which a lower-ranked team defeats a higher-ranked team. This approach is based on the
premise that the fairest rankings system adheres as closely as possible to the actual games that
have been played by minimizing the percentage of these misranked games.

In addition to defining this new misrank percentage metric, we have developed a graph-
based ranking algorithm that determines the optimal ranking for a set of teams that best
matches actual game results. By default all games are weighted equally in the rankings, but
we can adjust this weight based upon game recency and point margin parameters. Applying
our graph-based ranking algorithm to six sports leagues and twelve existing rankings, we learn
the values of these parameters that best match existing rankings. For example, we find that
College Football rankings value early season game results as much as those later in the season.

We find that our new graph-based algorithm yields significantly lower misrank percentages
than existing sports rankings. For example for the 2018 National Football League regular
season, the misrank percentage for the NFL.com ranking is 40% higher than for the comparable
graph-based ranking using best-matched game recency and margin parameters. Even worse,
the misrank percentage for the 2018 College Football Playoff Poll is twice as much as the
graph-based ranking with the same parameters. The misrank percentage for the 2018 AP
Poll College Basketball rankings is more than twice as much as the comparable graph-based
ranking. These results show that our graph-based rankings are better than existing rankings
in remaining true to actual game results and that minimization of games between misranked
teams can and should be used as a basis for sports rankings.

∗Corresponding Author: cew@cs.wpi.edu



1 Introduction
Rankings are used in sports to reflect the relative strength of teams in comparison with each

other. Many approaches are used to rank teams—based upon a rating [14], polls by sports writ-
ers [1] or coaches [6], consensus power rankings from an expert panel [17] or computerized algo-
rithms [19] that reflect various weights. These rankings account for (either explicitly or implicitly)
factors such as wins/losses, when games are played, where games are played, margin of victory,
strength of schedule, injuries to key players, performance in past years and name recognition.

In this work we take a new approach to sports rankings that focuses on the actual games played
where the primary goal of the ranking is to minimize misranked game results in which a lower-
ranked team defeats a higher-ranked team. This approach is based on the premise that the fairest
rankings system adheres as closely as possible to the actual games that have been played by min-
imizing the percentage of “misranked” game results in which a lower-ranked team has defeated a
higher-ranked team. In a perfect rank ordering there would not be any misranked games in which
the lower-ranked team won, but with enough games played in any sports league season it is un-
likely to have a perfect ordering. In the simplest such case, if Team A beats Team B, Team B beats
Team C and then Team C beats Team A then there is no ordering between these three teams that
will avoid such a scenario.

In addition to defining this new misrank percentage metric, we design and implement an algo-
rithm that is able to determine the ordering of teams based on using it as the optimizing metric.
We apply the algorithm to game results for a variety of sports league seasons. We use an approach
that parameterizes the value of games based upon recency and point spread as well as doing so in a
manner that disambiguates amongst multiple equivalent orderings to determine the best ordering.

Our work makes a number of contributions:

1. definition of a misrank percentage metric that measures how closely a ranking adheres to
actual game results,

2. a graph-based ranking algorithm that can be applied to any sports league allowing rankings
for the teams in the league and comparisons across sports leagues,

3. algorithmic approximations that make it computational feasible to determine rankings with
minimized misrank percentage for sports leagues with a varied number of teams,

4. adjustable parameters to handle recency and point differential of games,

5. the ability to learn the inherent importance of game recency and margin in existing rankings,
and

6. an evaluation of existing rankings showing that they do not perform as well as our graph-
based algorithm in adherence to actual game results.

In the remainder of this report we describe the graph-based ranking algorithm and how we re-
solved various issues in its design and implementation. We describe the data and external rankings
to which we apply the algorithm and compare with the subsequent graph-based ranking results.
We go on to show sample rankings from actual data and how the misrank percentage metric varies
across six sports leagues. We use the parameterized algorithm to learn the relative importance of
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game recency and margins for the various sports rankings and evaluate the misrank percentage for
a variety of rankings. We conclude with a summary of results and directions for future work.

2 Graph-Based Ranking Algorithm
In computer science, a graph is a convenient data structure consisting of nodes and edges

between those nodes. An example graph is shown in Figure 1, where A, B, C, and D are the four
nodes (also called vertices) and the lines between them are the five edges of the graph. This graph
is directed because the edges have a direction as indicated by the arrows. One might use a graph
like this to represent flights between cities—nodes represent cities and edges represent existing
flights between those cities.

A B

CD

Figure 1: A Directed Graph with Four Nodes and Five Edges

Figure 1 is cyclic because there is a cycle from node A to C to D and back to A. A feedback
arc set is a set of edges that can be removed from a graph to turn it into a directed acyclic graph.
The minimum feedback arc set is a feedback arc set with the least possible number of edges [24].
There can be multiple minimum feedback arc sets for each graph. For example, removing the edge
from node C to D in Figure 1 results in a directed acyclic graph. Similarly, removing the edge from
node D to A results in a directed acyclic graph, which is shown in Figure 2. This single “backedge”
(shown in red in the figure) is a minimum feedback arc set for the graph and the remaining edges
are rank ordered with no cycles.

A B C D

Figure 2: Ordered Graph with a Single Backedge

In this work we use a graph-based approach to represent games played between teams in a
sports league, such as the National Football League, where nodes are teams and a directed edge
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from node A to node B in the graph indicates team A defeated team B in a game. We define
a ranking for the set of teams based on the games played between them by finding a minimum
feedback arc set (as done in Figure 2) and using the resulting node ordering as the ranking. We
define the metric “misrank percentage” as the percentage of backedges in an ordered graph out of
the total number of edges. This metric is so named because it is the percentage of games in which
a lower-ranked team defeats a higher-ranked team. In Figure 2, the misrank percentage is 20% as
there is one backedge out of a total of five edges.

While this is a simple and elegant approach to ranking a set of teams based upon the games
played between them, there are a number of issues to resolve in doing so. These issues include:

1. Finding a minimum feedback arc set for any graph is an NP-hard problem (see [12], p. 192),
which means that there is no known algorithm that can solve this problem in polynomial
time [23]. From a practical standpoint, this problem means that the computation time grows
exponentially as the number of nodes (teams) increases. In our work we see a dramatic
increase in computation time as the number of teams grows to more than 30.

2. There can be multiple minimum feedback arc sets for a graph resulting in multiple ordered
graphs with the same misrank percentage. Determining the best ordering from multiple
equivalent (based on the misrank percentage metric) orderings is an issue we need to resolve.

3. As described thus far, all edges have the same weight meaning that all games count the same.
However, factors such as the score margin in the game (was it close or was it a blowout) or
the recency of the game (was the game played early or late in the season) may mean that
some edges are weighted more than other edges. We need to resolve how to consider and
account for different edge weights in our algorithm.

In the remainder of this section we summarize how we resolve each of these issues in our
approach. See [18] for more details on how each of these aspects are handled, variants of the
algorithm that we explored, and how the algorithm was implemented.

2.1 Handling Computational Cost of Algorithm
Our approach needs to determine which order of nodes gives the smallest percentage (or

weight) of backedges. The straightforward approach to solve this problem is to simply use “brute
force” and consider all possible orderings of nodes and select an ordering that provides the min-
imal weight. However, this approach does not scale. Instead we use a dynamic programming
algorithm, which finds an optimal order with a significantly reduced time complexity compared to
the brute-force algorithm.

We designed a dynamic programming algorithm based on subproblems. For each subproblem,
we find the minimum feedback arc set for a smaller set of nodes. This dynamic programming
algorithm is bottom-up, which keeps only an optimal solution for each set of nodes.

In addition to dynamic programming, we use a number of other techniques to increase the
computational efficiency and improve the resulting order. These include:

1. pruning to remove subrankings with a high total backedge weight;

2. parallelization of subproblems among separate threads of execution;
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3. preording of teams based on net edge weight in and out of nodes, which by default is simply
the team’s win/loss record; and

4. the use of smaller sliding windows (or ranges) of teams where our dynamic programming
algorithm is applied to a smaller range of teams at a time.

2.2 Postprocessing to Choose From Multiple Orderings
Once a ranking is created by our algorithm, there is typically flexibility to move teams without

changing the backedge weight. Such a common situation is when two teams are next to each other
in a ranking, but they have not played each other. Since there is no edge between the two nodes
in the graph, no backedge will be introduced by switching the team’s places in the ranking. As a
consequence, once a ranking is determined by the algorithm we next postprocess the results in two
ways.

First we determine what we call the Range of Correctness (RoC) for each team in the ranking.
This postprocessing step indicates the certainty of each team’s placing within a ranking. The Range
of Correctness does not choose the best ranking given equivalent backedges. Rather, it is intended
to allow a viewer to understand the “play” of each team within a given ranking. For a given team,
the top of the range is one below the next lowest ranked team to which the team has lost, while
the bottom of range is one above the next highest rank team over which the team has won. Note:
an undefeated team will always have an upper range of 1 since any undefeated team could be the
top-ranked team. Similarly any winless team will always have a lower range of the number of
teams since any such team could be the lowest ranked team.

The second postprocessing step reconsiders each team’s ranking (within the limits of the Range
of Correctness) based on a secondary metric that considers the relative strengths and weaknesses
of a team’s wins and losses. This step is where the strength of a team’s schedule is utilized. This
secondary metric gives a higher score to teams who defeat teams that are higher in the ranking,
and a lower score to teams who defeat teams that are lower in the ranking. It penalizes teams less
when they are beaten by higher-ranked teams and penalizes teams more when they are beaten by
lower-ranked teams. The weighted score is defined in Equation 1.

score(vi) =
n−1∑
j=0

(n+ 1− rank(vj))× w(vi, vj)−
n−1∑
j=0

rank(vj)× w(vj, vi) (1)

where rank(vi) is the rank (starting from 1) of node (vertex) vi, and n is the number of teams.
When this score is maximized, we have the best possible ranking according to our secondary
metric. In the default case, the weight of all edges (w(vi, vj)) is 1.0, meaning all games count
equally regardless of the score or when the game was played.

2.3 Accounting for Recency and Margin of Games
A third issue to resolve with our approach is how to weight the value of each game played

between two teams. As indicated in Equation 1 for our secondary weighted score metric, there is a
weight associated with each edge with a default value of 1.0. However, depending on the sport this
weight may not be appropriate to use for all games in generating the best ranking. We introduce
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two parameters, where each can take on a value between 0.0 and 1.0, to account for game recency
and margin in our rankings.

The recency parameter considers the timeframe from the beginning of a sport season until its
current point. Its value specifies the minimum weight of a win at the beginning of a season. For
example, if the recency parameter is 1.0 then a win at the beginning of season counts the same as
a win at the current point of the season—all wins are the same weight based on recency. If the
recency parameter is 0.0 then a win at the beginning of season counts for zero weight. We use a
linear distribution between the beginning and current point of the season. Thus if we are computing
a ranking at the end of the season with a recency parameter of 0.5, then a win at the beginning of
the season counts 0.5, a win half way through the season counts 0.75 and win at end of the season
counts 1.0.

Similarly, we use the margin parameter to weight the value of the game based upon the point
spread of the win. This parameter specifies the minimum weight of a close win in contrast to a
“big” win that counts for a weight of 1.0. For example, if the parameter has a value of 1.0 then
a close win counts the same as a big win—all wins are the same weight based on margin. If the
parameter has a value of 0.0 then a close win counts for zero weight. We use linear distribution
between a close and a big win. Thus if we are computing a ranking with a margin parameter of 0.5,
then a close win counts 0.5, a moderate-sized win half way between a close and big win counts
0.75, and big win counts 1.0.

A key decision with the margin parameter is what constitutes a “big” win. Obviously point
differential for such a win varies across different sports. After examination of distributions of
point differences, we chose to define the big win point differential as the 75th-percentile of all
point differentials for a given sport. Examples of this 75th percentile point differential for various
sports are: National Football League, 17 points; National Hockey League, 3 goals; Major League
Baseball, 5 runs; and NCAA Basketball, 18 points. A big win with full margin value is assigned
to any game in which a team wins by at least this point differential and the value for smaller wins
is linearly scaled from the margin parameter value for a one-point win.

The end result of these considerations is that the weight for each edge is calculated as the
product of the recency and margin weights for the edge. For example, if the recency and margin
parameters are each 0.5 then a close win at the beginning of the season will translate into an edge
weight of 0.25 in comparison to a big win at the end of the season, which will translate into an
edge weight of 1.0.

3 Methodology
A feature of our approach is that it can be applied to compute rankings for any sports league.

We chose to compute rankings for the following six leagues: Major League Baseball (MLB),
the National Basketball Association (NBA), the National Football League (NFL), the National
Hockey League (NHL), NCAA College Basketball (CBB) and NCAA College Football (CFP).
These sports leagues vary significantly in number of teams, number of games, and average points
per game. We chose the first four leagues because they are popular professional sports in the United
States. We also wanted to include NCAA College Basketball and Football because they present
interesting ranking challenges due to the large number of teams. Additionally, rankings for these
leagues are important because championship tournament members in NCAA College Football and

5



Basketball are determined by a ranking.
The MLB, NFL, NBA, and NHL leagues all result in relatively dense graphs because teams

play each other many times. In the NBA and NHL, all nodes are connected (have an edge between
them) since every team plays every other team at least twice. Additionally, MLB teams each play
162 games, meaning that two teams may play each other many times.

NCAA Basketball and Football provide different graphs from those of professional leagues.
NCAA Basketball and Football graphs have many more nodes and are sparser in the set of edges
(games) than their professional league counterparts. These graphs often have small, dense sub-
graphs (due to conference play) within the larger, sparser graphs.

Overall, the differences between each sport analyzed in this project significantly affect the rank-
ing algorithm design. It must account for both sparse and dense graphs, as well as varying numbers
of nodes. It was important to consider these factors when creating the algorithm to translate graphs
into rankings.

Table 1 summarizes the sports leagues that are analyzed along with the specific sports season
that is used in the reported results. Data for each each league were obtained from websites refer-
enced in the table. The table also shows other rankings that were available for each league. These
external rankings allow us to compare the rankings that we generate with known rankings. In all
cases, the set of data and the rankings were captured at the end of the regular season games, but
before any post season games were played.

Table 1: Analyzed Sports Leagues
Sports League Abbrev. Season Comparable External Rankings
Major League Baseball [3] MLB 2018 ESPN [7], NBC Sports [9]
National Basketball Association [4] NBA 2017-18 ESPN [8], NBA.com [15]
National Football League [16] NFL 2018 ESPN [10], NFL.com [17]
National Hockey League [13] NHL 2017-18 ESPN [11], SI [20]
NCAA College Basketball [21] CBB 2017-18 AP Poll [2], Coaches Poll [6]
NCAA College Football [22] CFB 2018 AP Poll [1], CFP [5]

4 Sample Ranking
As an illustration of our approach, Table 2 shows the application of our graph-based ranking

algorithm to the 2018 NFL season where the recency and margin parameters are both set to 1.0 so
that all games played are weighted equally regardless of when played or the point differential of
the game.

Above the table is shown that the misrank pct. for this ranking and parameters is 19%. This
percentage means that despite being an optimal ranking there are 19% of game results teams where
a lower-ranked team defeated a higher-ranked team. The misrank pct. is a reflection of the sport
and weighting of the games. In subsequent results we show how the misrank pct. varies as the
sport and parameters change.

The results in Table 2 show that using these parameters the best ranking has New Orleans as the
best team with New England ranked number two. Again keep in mind that these rankings are based
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Table 2: 2018 NFL Regular Season Ranking with All Games Weighted Equally
Recency = 1.0 Margin = 1.0 Misrank Pct. = 19%

Rank Team RoC
1. New Orleans [ 1, 4 ]
2. New England [ 1, 2 ]
3. Houston [ 3, 8 ]
4. Chicago [ 3, 4 ]
5. L.A. Rams [ 5, 5 ]
6. Kansas City [ 6, 6 ]
7. Baltimore [ 7, 7 ]
8. L.A. Chargers [ 8, 8 ]
9. Cleveland [ 9, 9 ]

10. Denver [ 10, 10 ]
11. Pittsburgh [ 11, 12 ]
12. Seattle [ 11, 16 ]
13. Cincinnati [ 12, 13 ]
14. Indianapolis [ 14, 14 ]
15. Buffalo [ 15, 15 ]
16. Tennessee [ 16, 16 ]
17. Dallas [ 17, 18 ]
18. Minnesota [ 16, 18 ]
19. Philadelphia [ 19, 19 ]
20. Atlanta [ 20, 20 ]
21. Washington [ 21, 21 ]
22. Jacksonville [ 22, 24 ]
23. Detroit [ 19, 23 ]
24. Carolina [ 24, 24 ]
25. N.Y. Giants [ 25, 25 ]
26. Tampa Bay [ 26, 30 ]
27. Arizona [ 24, 27 ]
28. Green Bay [ 28, 28 ]
29. Miami [ 29, 29 ]
30. N.Y. Jets [ 30, 32 ]
31. San Francisco [ 29, 31 ]
32. Oakland [ 32, 32 ]

only on the regular season results. The Range of Correctness (RoC) shows that the rank range for
New Orleans is between 1 and 4 (they beat the 5th-ranked L.A. Rams) while it is between 1 and 2
for New England (they beat 3rd-ranked Houston). There is no explicit ordering between the two
teams because they did not play each other in the regular season. New Orleans is ranked higher
because it has a higher secondary weight metric value (See Section 2.2) than New England.

The RoC results in the table show that many teams are fixed into a particular ranking because
they have lost to the team ranked immediately above them and beat the team ranked immediately
below. Such an example are the L.A. Rams, ranked 5th, who lost to 4th-ranked Chicago and beat
6th-ranked Kansas City. Changing the ordering would increase the overall misrank percentage.
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5 Comparison of Sports Rankings Using Misrank Percentage
Now that we have seen an example of actual rankings for one sports league, the availability

of a ranking system that can be applied to any sport affords a number of opportunities for further
analysis. The first of these analyses compares sports leagues by using a common set of ranking
parameters to understand how the misrank percentage varies as we examine different leagues. For
this comparison we again use a recency and margin parameter value of 1.0 as done for results in
Table 2.

Figure 3 shows the relative misrank pct. for the six sports leagues using the parameters that
weight all games equally. The results are rank ordered with CFB having the lowest misrank pct. at
11% with the NFL second best at 19% (as also shown in Table 2). MLB has the highest misrank
pct. for these parameters at 38%.
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Figure 3: Relative Misrank Percentage for Best Ranking of Six Sports Leagues with All Games
Weighted Equally (Regardless of Margin and Recency)

These results are influenced by the graph density of games played as well as the many number
of games between the same teams within a season. MLB teams do not play all other teams, but
the schedule has many games between the same two teams and it is unlikely that one team always
beats the other.

6 Learning What Factors Are Important in Sports Rankings
The flexibility of our ranking systems allows us to learn about the importance of game recency

and margins in the existing rankings used for a variety of sports. In some rankings these factors
may be explicitly used while in other rankings these factors may implicitly be considered as part
of the ranking.
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As shown in Table 1 we gathered information on two well-known external rankings for each of
the six leagues. These rankings are from organizations such as ESPN, NBC Sports, the Associated
Press, NFL.com, and NBA.com. These are respected rankings that provide context for the rankings
that we generate. Additionally, we develop a simple means to compare rankings that allows us to
look at these external rankings and learn the influence of game recency and point differential in
these rankings.

Our method of learning about these external rankings is to generate our rankings for a variety
of parameter combinations. We test with the recency parameter set to the five values of 0.0, 0.25,
0.5, 0.75 and 1.0. In combination we test with the margin parameter set to the same five values for
a total of 25 parameter combinations. For each combination we find the graph-based ranking that
results in the lowest misrank pct. and compare the ranking to determine its closeness to an external
ranking.

As an example, we return to the NFL where we find the ranking that most closely matches
the end-of-the-regular-season ESPN ranking [10] is generated with a recency parameter of 0.75
(not much variance in weight based on recency) and a margin parameter of 0.25 (more variance
in weight based on margin). The resulting graph-based ranking is shown along side the ESPN
ranking in Table 3. The table shows New Orleans and New England are the two top ranked teams
as shown for different parameters in Table 2, but there is variation in the remainder of the rankings
with Chicago ranked third with these new parameters.

Table 3 shows that in the ESPN rankings the L.A. Rams are the top-ranked team followed
by New Orleans, Kansas City and New England. The last column in the table shows the relative
difference in the ranking place between our graph-based ranking and the ESPN ranking. The Rams
have rank difference of +3 while New Orleans has a rank difference of -1. Buffalo has the largest
rank difference (-13) with a ranking of 28 in ESPN and 15 in our graph-based approach.

We compute the average rank difference between our generated ranking and an external ranking
by accumulating the absolute value of the rank difference for each team and then dividing by
the number of teams to get an average. This average of 4.0 between the graph-based and ESPN
rankings is shown at the top of Table 3. This average rank difference is the smallest of the 25 graph-
based rankings generated with the various parameter combinations for College Football. The top
of the table also shows that this graph-based ranking has a misrank pct. of 16%.

As another example of comparing a generated ranking with an external ranking, Table 4 shows
the graph-based ranking of College Football that is closest to the end-of-regular-season College
Football Playoff rankings [5]. As shown, this is the ranking generated with a recency parameter of
1.0 and a margin parameter of 0.5. The recency parameter of 1.0 means that games are weighted
equally regardless of when played in the season with the margin of each game having a moderate
effect on the game weight.

The table has a number of interesting results. Most notably the first four teams are exactly the
same as were chosen for the past year’s College Football Playoff System. A difference between the
two rankings does not occur until the fifth rank where the CFP ranked Georgia at that spot while
the graph-based approach ranked them 9th. The biggest difference between the two rankings was
for Iowa State, which is ranked 24th in the CFP, but is 56th in the graph-based ranking. Note that
while only the top 25 teams are shown for the graph-based ranking all 130 teams are ranked in
order by the algorithm with the full ranking available in [18].

Once again the average rank difference is shown at the top of Table 4 with a value of 5.6.
Again this Average Rank Difference is the smallest of the 25 graph-based rankings generated with
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Table 3: NFL Comparative Rankings with Smallest Average Rank Difference between Graph-
Based and ESPN Rankings

Recency = 0.75 Margin = 0.25 Avg Rank Diff = 4.0 Misrank Pct. = 16%
Rank Graph-Based ESPN Rank Difference

1. New Orleans L.A. Rams [+3]
2. New England New Orleans [-1]
3. Chicago Kansas City [+2]
4. L.A. Rams New England [-2]
5. Kansas City L.A. Chargers [+2]
6. Baltimore Houston [+2]
7. L.A. Chargers Pittsburgh [+3]
8. Houston Chicago [-5]
9. Denver Seattle [+2]

10. Pittsburgh Baltimore [-4]
11. Seattle Dallas [+7]
12. Cleveland Minnesota [+5]
13. Cincinnati Indianapolis [+1]
14. Indianapolis Carolina [+9]
15. Buffalo Denver [-6]
16. Tennessee Tennessee [0]
17. Minnesota Philadelphia [+2]
18. Dallas Washington [+4]
19. Philadelphia Green Bay [+9]
20. Atlanta Miami [+9]
21. Detroit Atlanta [-1]
22. Washington Cleveland [-10]
23. Carolina Tampa Bay [+3]
24. Jacksonville Jacksonville [0]
25. N.Y. Giants Cincinnati [-12]
26. Tampa Bay N.Y. Giants [-1]
27. Arizona Detroit [-6]
28. Green Bay Buffalo [-13]
29. Miami N.Y. Jets [+1]
30. N.Y. Jets Arizona [-3]
31. San Francisco San Francisco [0]
32. Oakland Oakland [0]

the various parameter combinations. The top of the table also shows that this graph-based ranking
has a misrank pct. of 10%.

While these two specific ranking comparisons are interesting in themselves, a contribution of
our graph-based ranking approach is using the same approach for all twelve external rankings to
learn the relative importance of game recency and margin in each of these rankings.

The results of this analysis are shown in Figure 4 where the game margin and recency parame-
ters that best match each of the twelve sport league rankings are shown (along with the average rank
difference). Results shown in Table 3 locate the point on the grid for NFL:ESPN at recency=0.75,
margin=0.25 while the results shown in Table 4 locate the point on the grid for CFB:CFP at re-
cency=1.0, margin=0.5.

Figure 4 shows a number of interesting results regarding the importance of game recency and
margin in sports league rankings.
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Table 4: College Football Comparative Rankings with Smallest Average Rank Difference between
Graph-Based and CFP Rankings

Recency = 1.0 Margin = 0.5 Avg Rank Diff = 5.6 Misrank Pct. = 10%
Rank Graph-Based College Football Playoff Rank Difference

1. Alabama Alabama [0]
2. Clemson Clemson [0]
3. Notre Dame Notre Dame [0]
4. Oklahoma Oklahoma [0]
5. Central Florida Georgia [+4]
6. Ohio State Ohio State [0]
7. Michigan Michigan [0]
8. Louisiana State Central Florida [-3]
9. Georgia Washington [+7]

10. Kentucky Florida [+10]
11. West Virginia Louisiana State [-3]
12. Boise State Penn State [+2]
13. Fresno State Washington State [+4]
14. Penn State Kentucky [-4]
15. Texas Texas [0]
16. Washington West Virginia [-5]
17. Washington State Utah [+8]
18. South Carolina Mississippi State [+3]
19. Missouri Texas A&M [+3]
20. Florida Syracuse [+16]
21. Mississippi State Fresno State [-8]
22. Texas A&M Northwestern [+11]
23. Vanderbilt Missouri [-4]
24. North Carolina State Iowa State [+32]
25. Utah Boise State [-13]

1. All sports rankings have at least a moderate amount of consideration for games regardless of
when they are played (with a recency parameter of 0.5 or greater).

2. That result is particularly true for College Football where rankings match the closest with
a recency parameter of 1.0 meaning early season games matter as much as those in the late
season.

3. There is much variation in terms of importance of margin. One ranking (NHL:ESPN) was
best matched with a parameter of 1.0 meaning point differential did not make a difference,
but the other NHL ranking had the parameter at 0.0 so there are no clear conclusions for the
sport.

4. The two NBA rankings are consistent with a moderate value of 0.5 for each parameter.

5. The two College Basketball rankings are also consistent with a moderate value for recency
and a value of 0.0 for margin parameter indicating maximum sensitivity to point margin for
this sports league.
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7 Misrank Percentage Comparison
In the final part of our work we examine how the graph-based rankings compares with the

relevant external rankings for each of the six sports leagues. For this portion of the analysis we
focus on the misrank percentage for each ranking across a variety of game recency and margin
parameters. In each case, we compare with parameter value pairs of (0.0, 0.0), (0.5, 0.5) and
(1.0, 1.0) for each ranking and sports leagues. We also compute misrank percentage results for
additional parameter value pairs shown in Figure 4 that result in the closest matches between the
graph-based and an external rankings.

The first set of misrank pct. results are shown for the NFL in Figure 5. They include results
for the rankings shown in Tables 2 and 3. The results show that the misrank pct. for the NFL.com
rankings are a bit better than the ESPN ranking for all parameter value pairs. More importantly, the
figure shows that the misrank pct. for the graph-based ranking is much lower than the two relevant
external rankings for all parameter value combinations. For example, as shown in Figure 4, the
closest match for the NFL.com rankings is the (0.5,0.25) value pair. Figure 5 shows that the graph-
based Ranking has a misrank pct. of 16% while the NFL.com has a misrank pct. of 23%, roughly
a 40% increase in the number of actual game results that do not match the rankings order of the
teams involved.

Similarly, Figure 6 shows College Football misrank pct. results for various parameter value
pairs, including (1.0,0.5) used for the closest graph-based ranking in Table 4. The results show
the the CFP rankings produced slightly lower misrank pct. results, but the graph-based rankings
are much better. For example, the (1.0,0.5) recency,margin parameter value pair results in a 10%
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Figure 5: NFL Misrank Percentages for Three Rankings and Across (Recency, Margin) Parameters
Value Pairs

misrank pct. for the 25 ranked teams while the CFP has a misrank pct. that is twice as much. Again,
the graph-based approach is more accurate in ordering the teams to reflect actual game results.
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Figure 6: College Football Misrank Percentages for Three Rankings and Across (Recency, Margin)
Parameters Value Pairs

Differences also exist between misrank pct. results for the graph-based rankings and relevant
existing rankings for MLB, the NBA and the NHL as shown in Figures 7-9. However, the misrank
percentage for all of these rankings is higher and the relative difference between the graph-based
ranking and the existing rankings is less.

The misrank pct. results differences are even more pronounced for College Basketball rankings
as shown in Figure 10. Using the closest (recency, margin) value pair of (0.5,0.0) from Figure 4,
the misrank pct for the AP Poll ranking results in a misrank pct. that is more than twice as much
as the graph-based ranking.

8 Summary and Future Work
In this work we have taken a new approach to sports rankings that focuses on the actual games

played where the primary goal of the ranking is to minimize “misranked” game results in which a
lower-ranked team defeats a higher-ranked team. This approach is based on the premise that the
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Figure 7: MLB Misrank Percentages for Three Rankings and Across (Recency, Margin) Parame-
ters Value Pairs
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Figure 8: NBA Misrank Percentages for Three Rankings and Across (Recency, Margin) Parameters
Value Pairs
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Figure 9: NHL Misrank Percentages for Three Rankings and Across (Recency, Margin) Parameters
Value Pairs
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Figure 10: College Basketball Misrank Percentages for Three Rankings and Across (Recency,
Margin) Parameters Value Pairs

fairest rankings system adheres as closely as possible to the actual games that have been played by
minimizing the percentage of these games.

In addition to defining this new misrank percentage metric, we have developed a graph-based
ranking algorithm that determines the optimal ranking for a set of teams based on the actual game
results. By default all games are weighted equally in the rankings, but we can adjust this weight
based upon game recency and point margin.

We apply the graph-based algorithm to games from six sports leagues and find that we are able
to generate a ranking for College Football that results in the lowest misrank percentage with the
optimal National Football League ranking having the second-lowest percentage. The ranking for
Major League Baseball teams results in the highest misrank percentage amongst the six leagues
because of the volume and density of games played between teams.

We also examined twelve existing rankings for these sports leagues in our work. The flexibility
of our graph-based ranking systems allows us to learn about the importance of game recency and
margins in each of these rankings. The results show that all sports rankings have at least a moderate
amount of consideration for each game regardless of when it was played. This result is particularly
true for College Football where early season games matter as much as those later in the season.
There is more variation amongst rankings for the importance of game margin.

Our final set of results show that our new graph-based algorithm yields significantly lower
misrank percentages than existing sports rankings. For example in the NFL, the misrank percentage
for the NFL.com ranking is 40% higher than for the graph-based ranking using best-matched game
recency and margin parameters. Even worse, the misrank percentage for the College Football
Playoff Poll is twice as much as for the graph-based ranking with the same parameters. The
misrank percentage for the AP Poll College Basketball rankings is more than twice as much as
the comparable graph-based ranking. These results show that our graph-based rankings are better
than existing rankings in remaining true to actual game results and that consideration of misrank
percentage should be included in sports rankings.

Despite these promising results, there are a number of direction for future work. These include
to:

1. make algorithm improvements for better orderings as the number of teams grows,

2. investigate additional approaches for the selection of the best ranking from amongst the set
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that yield the minimal misrank percentage,

3. consider other factors about a game such as the home team or injuries to key players as well
as include results from the post season,

4. apply our graph-based ranking algorithm to other sports and sports seasons, and

5. work to not just generate an ordering of teams, but to also consider a rating for each team
that could be used as a predictive model for future games.
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